Spaces:
Running
Running
File size: 7,475 Bytes
1c919b3 1f16e7a 3d2e59d 1c919b3 4d69201 1c919b3 db67fbd 9abf560 9afc022 db67fbd 3d2e59d 1c919b3 4d69201 db67fbd 4d69201 1c919b3 d74dfe0 1c919b3 d74dfe0 1c919b3 3d2e59d 645b85b 3d2e59d 1c919b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
from pathlib import Path
from collections import OrderedDict
DEFAULT_K = "∞"
# DEFAULT_K = "1500"
banner_url = "https://github.com/WildEval/ZeroEval/blob/main/docs/zebra/zebra_banner.png?raw=true" # the same repo here.
BANNER = f'<div style="display: flex; justify-content: flex-start;"><img src="{banner_url}" alt="Banner" style="width: 70vw; min-width: 300px; max-width: 1000px;border: 3px solid gray; border-color: gray black;"> </div>'
# TITLE = "<html> <head> <style> h1 {text-align: center;} </style> </head> <body> <h1> 🦁 AI2 WildBench Leaderboard </b> </body> </html>"
CITATION_TEXT = """
@misc{zebralogic2024,
title={ZebraLogic: Benchmarking the Logical Reasoning Ability of Language Models},
author={Bill Yuchen Lin and Ronan Le Bras and Peter Clark and Yejin Choi},
url={https://huggingface.co/spaces/allenai/ZebraLogic},
year={2024}
}
@article{dziri2024faith,
title={Faith and fate: Limits of transformers on compositionality},
author={Nouha Dziri and Ximing Lu and Melanie Sclar and Xiang Lorraine Li and Liwei Jian and Bill Yuchen Lin and Peter West and Chandra Bhagavatula and Ronan Le Bras and Jena D. Hwang and Soumya Sanyal and Sean Welleck and Xiang Ren and Allyson Ettinger and Za{\"i}d Harchaoui and Yejin Choi},
journal={Advances in Neural Information Processing Systems},
volume={36},
year={2024}
}
"""
# make column_names as an ordered dict
column_names = OrderedDict({
"Model": "Model",
"Mode": "Mode",
"Puzzle Acc": "Puzzle Acc",
"Cell Acc": "Cell Acc",
"No answer": "No answer",
"Easy Puzzle Acc": "Easy Puzzle Acc",
"Hard Puzzle Acc": "Hard Puzzle Acc",
# "Total Puzzles": "Total Puzzles",
# "Reason Lens": "Reason Lens",
})
LEADERBOARD_REMARKS = """**WB Reward**: for each comparison (A vs B), a reward for A is **+/-1** if A is **much better/worse** than B, and **+/-0.5** if A is **slightly better/worse** than B; when there is a **Tie**, the reward is **0**.
"""
# **WB Reward**: for each pairwise comparison, a reward for A is **+/-1** if A is **much better/worse** than B, and **+/-0.5** if A is **slightly better/worse** than B; 0 for a **Tie**.
# The baseline models are GPT4-Turbo, Haiku, and Llama2-70B, and Mix is the average of the three.
# **WB Score** individually scores each model based on checklists.
# Evaluator is GPT-4-Turbo.
LEADERBOARD_REMARKS_MAIN = """
"""
RANKING_COLUMN = "Puzzle Acc"
ORDERED_COLUMN_NAMES = [
"Model",
"Mode",
"Puzzle Acc",
"Easy Puzzle Acc",
"Hard Puzzle Acc",
"Cell Acc",
"No answer",
]
js_light = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
// Find the fieldset with the given id
const fieldset = document.getElementById("rank-column-radio");
// Create a new span element with the text "Decoding Mode:"
const rankBySpan = document.createElement("span");
rankBySpan.textContent = "Decoding Mode: ";
rankBySpan.style.fontWeight = "bold"; // Optional: make the text bold
rankBySpan.style.fontSize = "19px"; // Larger font size
rankBySpan.style.paddingRight = "18px"; // Add padding on the right
// Wrap the span and the labels in a flex container
const flexContainer = document.createElement("div");
flexContainer.style.display = "flex";
flexContainer.style.alignItems = "center";
// Insert the rankBySpan at the beginning of the flex container
flexContainer.appendChild(rankBySpan);
// Move all existing labels into the flex container
while (fieldset.firstChild) {
flexContainer.appendChild(fieldset.firstChild);
}
// Append the flex container back to the fieldset
fieldset.appendChild(flexContainer);
}
"""
js_code = """
function scroll_top() {
console.log("Hello from Gradio!");
const bubbles = document.querySelectorAll('.bubble-wrap');
bubbles.forEach((bubble, index) => {
setTimeout(() => {
bubble.scrollTop = 0;
}, index * 100); // Delay of 100ms between each iteration
});
}
"""
TASK_TYPE_STR = "**Tasks**: Info seeking (**InfoSek**), Creative Writing (**CrtWrt**), Coding&Debugging (**Code**), Reasoning (**Reason**), Editing (**Edit**), **Math**, Planning (**Plan**), Brainstorming (**Brnstrm**), Role playing (**RolPly**), Advice seeking (**AdvSek**), Data Analysis (**DataAna**)"
css = """
code {
font-size: large;
}
footer {visibility: hidden}
.top-left-LP{
margin-top: 6px;
margin-left: 5px;
}
.no_margin{
margin-top: 0px;
margin-left: 0px;
margin-right: 0px;
margin-bottom: 0px;
padding-top: 0px;
padding-left: 0px;
padding-right: 0px;
padding-bottom: 0px;
}
.markdown-text{font-size: 14pt}
.markdown-text-tiny{font-size: 10pt}
.markdown-text-small{font-size: 13pt}
.markdown-text-tiny{font-size: 12pt}
.markdown-text-tiny-red{
font-size: 12pt;
color: red;
background-color: yellow;
font-color: red;
font-weight: bold;
}
th {
text-align: center;
font-size: 17px; /* Adjust the font size as needed */
}
td {
font-size: 15px; /* Adjust the font size as needed */
text-align: center;
}
.sample_button{
border: 2px solid #000000;
border-radius: 10px;
padding: 10px;
font-size: 17pt;
font-weight: bold;
margin: 5px;
background-color: #D8BFD8;
}
.chat-common{
height: auto;
max-height: 400px;
min-height: 100px;
}
.chat-specific{
height: auto;
max-height: 600px;
min-height: 200px;
}
#od-benchmark-tab-table-button{
font-size: 15pt;
font-weight: bold;
}
.btn_boderline{
border: 1px solid #000000;
border-radius: 5px;
padding: 5px;
margin: 5px;
font-size: 15pt;
font-weight: bold;
}
.btn_boderline_next{
border: 0.1px solid #000000;
border-radius: 5px;
padding: 5px;
margin: 5px;
font-size: 15pt;
font-weight: bold;
}
.btn_boderline_gray{
border: 0.5px solid gray;
border-radius: 5px;
padding: 5px;
margin: 5px;
font-size: 15pt;
font-weight: italic;
}
.btn_boderline_selected{
border: 2px solid purple;
background-color: #f2f2f2;
border-radius: 5px;
padding: 5px;
margin: 5px;
font-size: 15pt;
font-weight: bold;
}
.accordion-label button span{
font-size: 14pt;
font-weight: bold;
}
#show-task-categorized span{
font-size: 13pt;
font-weight: bold;
}
#show-open-source-models span{
font-size: 13pt;
font-weight: bold;
}
#select-models span{
font-size: 10pt;
}
#select-tasks span{
font-size: 10pt;
}
.markdown-text-details{
margin: 10px;
padding: 10px;
}
button.selected[role="tab"][aria-selected="true"] {
font-size: 18px; /* or any other size you prefer */
font-weight: bold;
}
#od-benchmark-tab-table-ablation-button {
font-size: larger; /* Adjust the font size as needed */
}
.plotly-plot{
height: auto;
max-height: 600px;
min-height: 600px;
}
#length-margin-radio{
font-size: 10pt;
# padding: 0px;
# margin: 1px;
}
#show-task-categorized{
font-size: 12pt;
font-decoration: bold;
}
#show-open-source-models{
font-size: 12pt;
font-decoration: bold;
}
.box_md{
border: 1px solid #000000;
border-radius: 10px;
padding: 10px;
font-size: 12pt;
margin: 5px;
}
"""
|