Spaces:
Sleeping
Sleeping
import os | |
from timeit import default_timer as timer | |
from typing import Tuple | |
from pathlib import Path | |
from PIL import Image | |
import gradio as gr | |
import torch | |
from torch import nn | |
from torchvision import transforms | |
from model import create_effnetb3_model | |
class_names = ['apple_pie', 'baby_back_ribs', 'baklava', 'beef_carpaccio', 'beef_tartare', | |
'beet_salad', 'beignets', 'bibimbap', 'bread_pudding', 'breakfast_burrito', | |
'bruschetta', 'caesar_salad', 'cannoli', 'caprese_salad', 'carrot_cake', | |
'ceviche', 'cheese_plate', 'cheesecake', 'chicken_curry', 'chicken_quesadilla', | |
'chicken_wings', 'chocolate_cake', 'chocolate_mousse', 'churros', 'clam_chowder', | |
'club_sandwich', 'crab_cakes', 'creme_brulee', 'croque_madame', 'cup_cakes', | |
'deviled_eggs', 'donuts', 'dumplings', 'edamame', 'eggs_benedict', | |
'escargots', 'falafel', 'filet_mignon', 'fish_and_chips', 'foie_gras', | |
'french_fries', 'french_onion_soup', 'french_toast', 'fried_calamari', 'fried_rice', | |
'frozen_yogurt', 'garlic_bread', 'gnocchi', 'greek_salad', 'grilled_cheese_sandwich', | |
'grilled_salmon', 'guacamole', 'gyoza', 'hamburger', 'hot_and_sour_soup', | |
'hot_dog', 'huevos_rancheros', 'hummus', 'ice_cream', 'lasagna', | |
'lobster_bisque', 'lobster_roll_sandwich', 'macaroni_and_cheese', 'macarons', 'miso_soup', | |
'mussels', 'nachos', 'omelette', 'onion_rings', 'oysters', | |
'pad_thai', 'paella', 'pancakes', 'panna_cotta', 'peking_duck', | |
'pho', 'pizza', 'pork_chop', 'poutine', 'prime_rib', | |
'pulled_pork_sandwich', 'ramen', 'ravioli', 'red_velvet_cake', 'risotto', | |
'samosa', 'sashimi', 'scallops', 'seaweed_salad', 'shrimp_and_grits', | |
'spaghetti_bolognese', 'spaghetti_carbonara', 'spring_rolls', 'steak', 'strawberry_shortcake', | |
'sushi', 'tacos', 'takoyaki', 'tiramisu', 'tuna_tartare', 'waffles'] | |
device = "cpu" | |
# Create model | |
effnetb3, effnetb3_transforms = create_effnetb3_model(num_classes=len(class_names)) | |
# Load saved weights | |
effnetb3_state_dict = torch.load("effnetb3_full_food101.pth", | |
map_location=torch.device(device)) | |
effnetb3_state_dict['classifier.1.weight'] = effnetb3_state_dict.pop('classifier.weight') | |
effnetb3_state_dict['classifier.1.bias'] = effnetb3_state_dict.pop('classifier.bias') | |
effnetb3.load_state_dict(effnetb3_state_dict) | |
effnetb3.to(device); | |
# Define predict function | |
def predict(img: Image) -> Tuple[dict, float]: | |
"""Uses EffnetB3 model to transform and predict on img. Returns prediction | |
probabilities and time taken. | |
Args: | |
img (PIL.Image): Image to predict on. | |
Returns: | |
A tuple (pred_labels_and_probs, pred_time), where pred_labels_and_probs | |
is a dict mapping each class name to the probability the model assigns to | |
it, and pred_time is the time taken to predict (in seconds). | |
""" | |
start_time = timer() | |
img = effnetb3_transforms(img).unsqueeze(0) | |
effnetb3.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb3(img), dim=1) | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) | |
for i in range(len(class_names))} | |
pred_time = round(timer() - start_time, 4) | |
return pred_labels_and_probs, pred_time | |
# Initialize Gradio app | |
title = "FoodVision" | |
description = "EfficientNetB3 feature extractor to classify images of food. Upload an image or click on one of the examples to try it out!" | |
article = """ | |
From the [Zero to Mastery PyTorch tutorial](https://www.learnpytorch.io/09_pytorch_model_deployment/), using the | |
[Food-101 dataset](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/). | |
""" | |
examples = [[example] for example in Path("examples").glob("*.jpg")] | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), | |
gr.Number(label="Prediction time (s)")], | |
examples=examples, | |
title=title, | |
description=description, | |
article=article, | |
) | |
demo.launch() |