Spaces:
Sleeping
Sleeping
from typing import Tuple | |
import torch | |
from torch import nn | |
import torchvision | |
def create_effnetb3_model(num_classes: int = 101, | |
seed: int = 4, | |
) -> Tuple[nn.Module, torchvision.transforms.Compose]: | |
"""Create an EfficientNetB2 feature extractor model and transforms. | |
Args: | |
num_classes: Number of classes to use for classification (default 3). | |
seed: Random seed for reproducibility (default 4). | |
Returns: | |
A tuple (model, transforms) of the model and its image transforms. | |
""" | |
weights = torchvision.models.EfficientNet_B3_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = torchvision.models.efficientnet_b3(weights=weights) | |
# Freeze parameters below the head | |
for param in model.parameters(): | |
param.requires_grad = False | |
# Replace the classifier head with one of appropriate size for the problem | |
torch.manual_seed(seed) | |
model.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=1536, out_features=num_classes) | |
) | |
return model, transforms | |