Spaces:
Runtime error
Runtime error
initial commit
Browse files- app.py +63 -0
- effnetb2.pth +3 -0
- examples/.ipynb_checkpoints/1180001-checkpoint.jpg +0 -0
- examples/.ipynb_checkpoints/1280320-checkpoint.jpg +0 -0
- examples/.ipynb_checkpoints/705150-checkpoint.jpg +0 -0
- examples/1180001.jpg +0 -0
- examples/1280320.jpg +0 -0
- examples/705150.jpg +0 -0
- model.py +32 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from timeit import default_timer as timer
|
3 |
+
from typing import Tuple
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torchvision import transforms
|
10 |
+
|
11 |
+
from model import create_effnetb2_model
|
12 |
+
|
13 |
+
class_names = ["pizza", "steak", "sushi"]
|
14 |
+
device = "cpu"
|
15 |
+
|
16 |
+
# Create model
|
17 |
+
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names))
|
18 |
+
|
19 |
+
# Load saved weights
|
20 |
+
effnetb2.load_state_dict(torch.load("effnetb2.pth"),
|
21 |
+
map_location=torch.device(device))
|
22 |
+
|
23 |
+
# Define predict function
|
24 |
+
def predict(img: Image) -> Tuple[dict, float]:
|
25 |
+
"""Uses EffnetB2 model to transform and predict on img. Returns prediction
|
26 |
+
probabilities and time taken.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
img (PIL.Image): Image to predict on.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
A tuple (pred_labels_and_probs, pred_time), where pred_labels_and_probs
|
33 |
+
is a dict mapping each class name to the probability the model assigns to
|
34 |
+
it, and pred_time is the time taken to predict (in seconds).
|
35 |
+
"""
|
36 |
+
start_time = timer()
|
37 |
+
img = effnetb2_transforms(img).unsqueeze(0)
|
38 |
+
effnetb2.eval()
|
39 |
+
with torch.inference_mode():
|
40 |
+
pred_probs = torch.softmax(effnetb2(img), dim=1)
|
41 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i])
|
42 |
+
for i in range(len(class_names))}
|
43 |
+
pred_time = round(timer() - start_time, 4)
|
44 |
+
return pred_labels_and_probs, pred_time
|
45 |
+
|
46 |
+
# Initialize Gradio app
|
47 |
+
title = "FoodVision Mini"
|
48 |
+
description = "EfficientNetB2 feature extractor to classify images of food as pizza, steak, or sushi."
|
49 |
+
article = "From the [Zero to Mastery PyTorch tutorial](https://www.learnpytorch.io/09_pytorch_model_deployment/)"
|
50 |
+
examples = [list(example) for example in Path("examples").glob("*.jpg")]
|
51 |
+
|
52 |
+
demo = gr.Interface(
|
53 |
+
fn=predict,
|
54 |
+
inputs=gr.Image(type="pil"),
|
55 |
+
outputs=[gr.Label(num_top_classes=3, label="Predictions"),
|
56 |
+
gr.Number(label="Prediction time (s)")],
|
57 |
+
examples=example_list,
|
58 |
+
title=title,
|
59 |
+
description=description,
|
60 |
+
article=article,
|
61 |
+
)
|
62 |
+
|
63 |
+
demo.lauch()
|
effnetb2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:796022ec640571b749d822bb03ffaac90c49bded116726793cf9cc35e6b7109d
|
3 |
+
size 31294149
|
examples/.ipynb_checkpoints/1180001-checkpoint.jpg
ADDED
examples/.ipynb_checkpoints/1280320-checkpoint.jpg
ADDED
examples/.ipynb_checkpoints/705150-checkpoint.jpg
ADDED
examples/1180001.jpg
ADDED
examples/1280320.jpg
ADDED
examples/705150.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torchvision
|
6 |
+
|
7 |
+
def create_effnetb2_model(num_classes: int = 3,
|
8 |
+
seed: int = 4,
|
9 |
+
) -> Tuple[nn.Module, torchvision.Transforms]:
|
10 |
+
"""Create an EfficientNetB2 feature extractor model and transforms.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
num_classes: Number of classes to use for classification (default 3).
|
14 |
+
seed: Random seed for reproducibility (default 4).
|
15 |
+
|
16 |
+
Returns:
|
17 |
+
A tuple (model, transforms) of the model and its image transforms.
|
18 |
+
"""
|
19 |
+
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
|
20 |
+
transforms = effnet_b2_weights.transforms()
|
21 |
+
model = torchvision.models.efficientnet_b2(weights=weights)
|
22 |
+
|
23 |
+
# Freeze parameters below the head
|
24 |
+
for param in model.parameters():
|
25 |
+
param.requires_grad = False
|
26 |
+
# Replace the classifier head with one of appropriate size for the problem
|
27 |
+
torch.manual_seed(seed)
|
28 |
+
model.classifier = nn.Sequential(
|
29 |
+
nn.Dropout(p=0.3, inplace=True),
|
30 |
+
nn.Linear(in_features=1408, out_features=len(class_names))
|
31 |
+
)
|
32 |
+
return model, transforms
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.37.0
|
2 |
+
torch==2.0.1
|
3 |
+
torchvision==0.15.2
|