Spaces:
Running
Running
File size: 2,487 Bytes
210dbcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
from langchain.prompts import PromptTemplate
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_core.output_parsers import JsonOutputParser
from langdetect import detect
import time
# Initialize the LLM and other components
llm = HuggingFaceEndpoint(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
task="text-generation",
max_new_tokens=4096,
temperature=0.5,
do_sample=False,
)
llm_engine_hf = ChatHuggingFace(llm=llm)
template_classify = '''
Please carefully read the following text. The text is written in {LANG} language:
<text>
{TEXT}
</text>
After reading it, I want you to classify it in three groups: Positive, Negative, or Neutral.
Your final response MUST contain only the response, no other text.
Example:
Positive
Negative
Neutral
'''
template_json = '''
Your task is to read the following text, convert it to json format using 'Answer' as key and return it.
<text>
{RESPONSE}
</text>
Your final response MUST contain only the response, no other text.
Example:
{{"Answer":"Positive"}}
'''
json_output_parser = JsonOutputParser()
# Define the classify_text function
def classify_text(text):
global llm
start = time.time()
lang = detect(text)
prompt_classify = PromptTemplate(
template=template_classify,
input_variables=["LANG", "TEXT"]
)
formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang)
classify = llm.invoke(formatted_prompt)
prompt_json = PromptTemplate(
template=template_json,
input_variables=["RESPONSE"]
)
formatted_prompt = template_json.format(RESPONSE=classify)
response = llm.invoke(formatted_prompt)
parsed_output = json_output_parser.parse(response)
end = time.time()
duration = end - start
return parsed_output, duration #['Answer']
# Create the Gradio interface
def gradio_app(text):
classification, time_taken = classify_text(text)
return classification, f"Time taken: {time_taken:.2f} seconds"
def create_gradio_interface():
with gr.Blocks() as iface:
text_input = gr.Textbox(label="Text to Classify")
output_text = gr.Textbox(label="Classification")
time_taken = gr.Textbox(label="Time Taken (seconds)")
submit_btn = gr.Button("Classify")
submit_btn.click(fn=classify_text, inputs=text_input, outputs=[output_text, time_taken])
iface.launch()
if __name__ == "__main__":
create_gradio_interface()
|