File size: 2,546 Bytes
210dbcf
 
1a39e80
210dbcf
 
 
 
 
 
 
 
3543ab2
0147a25
210dbcf
 
 
 
00483df
 
 
 
2517fcf
b5e592d
4ce42df
00483df
d9888b5
210dbcf
 
 
 
3543ab2
 
 
 
 
210dbcf
 
 
 
 
 
 
 
 
af7893b
 
 
0147a25
 
5f188cd
210dbcf
 
 
 
 
 
 
3543ab2
210dbcf
 
af7893b
210dbcf
 
 
 
233c0df
af7893b
0147a25
210dbcf
0147a25
210dbcf
af7893b
 
 
 
 
210dbcf
 
 
 
af7893b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
from langchain_core.output_parsers import JsonOutputParser
from langdetect import detect
import time

# Initialize the LLM and other components
llm = HuggingFaceEndpoint(
    repo_id="mistralai/Mistral-7B-Instruct-v0.3",
    task="text-generation",
    max_new_tokens=128,
    temperature=0.7,
    do_sample=False,
)

template_classify = '''
You are a topic detector bot. Your task is to determine the main topic of given text phrase.

Answer general main topic not specific words.
Your answer does not contain specific information from given text.
Answer just one general main topic. Do not answer two or more topic.
Answer shortly with two or three word phrase. Do not answer with long sentence.
Answer topic with context. Example, if it says "My delivery is late", its topic is late delivery.
If you do not know the topic just answer as General.
What is the main topic of given text?:

<text>  
{TEXT}  
</text>

convert it to json format using 'Answer' as key and return it.
Your final response MUST contain only the response, no other text.
Example:
{{"Answer":["General"]}}
'''

json_output_parser = JsonOutputParser()

# Define the classify_text function
def classify_text(text):
    global llm

    start = time.time()
    try: 
        lang = detect(text)

    except:
        lang = "en"

    prompt_classify = PromptTemplate(
        template=template_classify,
        input_variables=["LANG", "TEXT"]
    )
    formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang)
    classify = llm.invoke(formatted_prompt)

    parsed_output = json_output_parser.parse(classify)
    end = time.time()
    duration = end - start
    return lang, parsed_output["Answer"][0], duration #['Answer']

# Create the Gradio interface
def create_gradio_interface():
    with gr.Blocks() as iface:
        text_input = gr.Textbox(label="Text")
        lang_output = gr.Textbox(label="Detected Language")
        output_text = gr.Textbox(label="Detected Topics")
        time_taken = gr.Textbox(label="Time Taken (seconds)")
        submit_btn = gr.Button("Detect topic")

        def on_submit(text):
            lang, classification, duration = classify_text(text)
            return lang, classification, f"Time taken: {duration:.2f} seconds"

        submit_btn.click(fn=on_submit, inputs=text_input, outputs=[lang_output, output_text, time_taken])

    iface.launch()

if __name__ == "__main__":
    create_gradio_interface()