import gradio as gr
from langchain.prompts import PromptTemplate
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_core.output_parsers import JsonOutputParser
from langdetect import detect
import time
# Initialize the LLM and other components
llm = HuggingFaceEndpoint(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
task="text-generation",
max_new_tokens=4096,
temperature=0.5,
do_sample=False,
)
llm_engine_hf = ChatHuggingFace(llm=llm)
# Update the template to extract topic information
template_classify = '''
Please read the following text written in {LANG} language and extract the main topics discussed in it.
You can list more than one topic or topics sentence by sentence. List the topics clearly.
{TEXT}
'''
template_json = '''
Your task is to read the following extracted topics and convert them into JSON format using 'Topics' as the key.
{RESPONSE}
The final response should be in this format:
{{"Topics": ["Topic1", "Topic2", ...]}}
'''
json_output_parser = JsonOutputParser()
# Define the classify_text function
def classify_text(text):
global llm
start = time.time()
lang = detect(text)
prompt_classify = PromptTemplate(
template=template_classify,
input_variables=["LANG", "TEXT"]
)
formatted_prompt = prompt_classify.format(TEXT=text, LANG=lang)
classify = llm.invoke(formatted_prompt)
prompt_json = PromptTemplate(
template=template_json,
input_variables=["RESPONSE"]
)
formatted_prompt = template_json.format(RESPONSE=classify)
response = llm.invoke(formatted_prompt)
parsed_output = json_output_parser.parse(response)
end = time.time()
duration = end - start
return parsed_output, duration
# Create the Gradio interface
def gradio_app(text):
classification, time_taken = classify_text(text)
return classification, f"Time taken: {time_taken:.2f} seconds"
def create_gradio_interface():
with gr.Blocks() as iface:
text_input = gr.Textbox(label="Text to Classify")
output_text = gr.Textbox(label="Extracted Topics")
time_taken = gr.Textbox(label="Time Taken (seconds)")
submit_btn = gr.Button("Extract Topics")
submit_btn.click(fn=gradio_app, inputs=text_input, outputs=[output_text, time_taken])
iface.launch()
if __name__ == "__main__":
create_gradio_interface()