Spaces:
Runtime error
Runtime error
# external libraries | |
import streamlit as st | |
from transformers import pipeline | |
import pandas as pd | |
# internal libraries | |
from config import config | |
import pipeline | |
def main(): | |
st.set_page_config( | |
layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc. | |
initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed" | |
page_title=config.main_title, # String or None. Strings get appended with "• Streamlit". | |
page_icon=config.logo_path, # String, anything supported by st.image, or None. | |
) | |
if "output" not in st.session_state: | |
st.session_state['data'] = pd.read_csv(config.sample_texts_path) | |
st.session_state['sample_text'] = None | |
generate_text() | |
st.session_state["output"] = False | |
st.session_state["output_text"] = "" | |
st.session_state['inputs'] = {} | |
col1, col2, col3 = st.columns(3) | |
col1.write(' ') | |
col2.image(config.logo_path) | |
col3.write(' ') | |
st.markdown(f"<h1 style='text-align: center;'>{config.main_title}</h1>", unsafe_allow_html=True) | |
st.markdown(f"<h3 style='text-align: center;'>{config.lecture_title}</h3>", unsafe_allow_html=True) | |
# topic modelling radio bar | |
input_topic_modelling = st.radio( | |
config.topic_modelling_title, | |
config.topic_modelling_answers, | |
horizontal=True) | |
st.session_state['inputs']['input_topic_modelling'] = input_topic_modelling | |
# input text area | |
input_text = st.text_area(config.input_text, st.session_state['sample_text'], height=300) | |
st.session_state['inputs']['input_text'] = input_text | |
# generate sample text button | |
st.button(config.button_text, on_click=generate_text) | |
# choosing segmenter radio bar | |
input_segmenter = st.radio( | |
config.segmenter_title, | |
config.segmenter_answers, | |
horizontal=True) | |
st.session_state['inputs']['input_segmenter'] = input_segmenter | |
# choosing summarizer algorithm radio bar | |
input_summarizer = st.radio( | |
config.summarizer_title, | |
config.summarizer_answers, | |
horizontal=True) | |
st.session_state['inputs']['input_summarizer'] = input_summarizer | |
# generating summary button | |
col1, col2, col3 = st.columns(3) | |
col1.header(' ') | |
col2.button(config.generate_text, on_click=generate_summary) | |
col3.header(' ') | |
if st.session_state["output"]: | |
TOPICS = [key for key, value in st.session_state["output_text"].items() if key != '#'] | |
if config.filter_threshold_summaries: | |
TOPICS = [key for key in TOPICS if st.session_state["output_text"][key]['summary'] != config.threshold_error] | |
st.write(config.output_title) | |
options = {} | |
for topic in TOPICS: | |
option = st.checkbox(topic) | |
options[topic] = option | |
if len(options) == 0: | |
st.warning(config.warning_len_input_text, icon="⚠️") | |
for topic, option in options.items(): | |
if option == True: | |
st.text_area(topic, | |
st.session_state["output_text"][topic]['summary'], | |
disabled=True) | |
def generate_text(): | |
df = st.session_state['data'] | |
df = df[~df['data'].isnull()] | |
df = df[df['data'].str.len().gt(100)] | |
st.session_state['sample_text'] = df.sample(1)['data'].values[0] | |
def generate_summary(): | |
st.session_state["output"] = True | |
MODELS = { | |
'summarizer':st.session_state['inputs']['input_summarizer'], | |
'topic_modelling':st.session_state['inputs']['input_topic_modelling'], | |
'segmentizer':st.session_state['inputs']['input_segmenter'] | |
} | |
with st.spinner('Generating the output of Topic Modeling for Summarization...'): | |
OUTPUT = pipeline.run(st.session_state['inputs']['input_text'], MODELS) | |
st.session_state["output_text"] = OUTPUT | |
st.success('Done!') | |
if __name__ == "__main__": | |
main() |