File size: 9,970 Bytes
0f0e0b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import gc
import os
import io
import math
import sys
import tempfile

from PIL import Image, ImageOps
import requests
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm

import numpy as np

from math import log2, sqrt

import argparse
import pickle




################################### mask_fusion ######################################
from util.metrics_accumulator import MetricsAccumulator
metrics_accumulator = MetricsAccumulator()

from pathlib import Path
from PIL import Image
################################### mask_fusion ######################################

import clip
import lpips
from torch.nn.functional import mse_loss

################################### CLIPseg ######################################
from  torchvision import utils as vutils
import cv2  

################################### CLIPseg ######################################

def str2bool(x):
    return x.lower() in ('true')
    
USE_CPU = False
device = torch.device('cuda:0' if (torch.cuda.is_available() and not USE_CPU) else 'cpu')


def fetch(url_or_path):
    if str(url_or_path).startswith('http://') or str(url_or_path).startswith('https://'):
        r = requests.get(url_or_path)
        r.raise_for_status()
        fd = io.BytesIO()
        fd.write(r.content)
        fd.seek(0)
        return fd
    return open(url_or_path, 'rb')


class MakeCutouts(nn.Module):
    def __init__(self, cut_size, cutn, cut_pow=1.):
        super().__init__()

        self.cut_size = cut_size
        self.cutn = cutn
        self.cut_pow = cut_pow

    def forward(self, input):
        sideY, sideX = input.shape[2:4]
        max_size = min(sideX, sideY)
        min_size = min(sideX, sideY, self.cut_size)
        cutouts = []
        for _ in range(self.cutn):
            size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
            offsetx = torch.randint(0, sideX - size + 1, ())
            offsety = torch.randint(0, sideY - size + 1, ())
            cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
            cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
        return torch.cat(cutouts)

def spherical_dist_loss(x, y):
    x = F.normalize(x, dim=-1)
    y = F.normalize(y, dim=-1)
    return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)


def do_run(
    arg_seed, arg_text, arg_batch_size, arg_num_batches, arg_negative, arg_cutn, arg_edit, arg_height, arg_width,
    arg_edit_y, arg_edit_x, arg_edit_width, arg_edit_height, mask, arg_guidance_scale, arg_background_preservation_loss,
    arg_lpips_sim_lambda, arg_l2_sim_lambda, arg_ddpm, arg_ddim, arg_enforce_background, arg_clip_guidance_scale,
    arg_clip_guidance, model_params, model, diffusion, ldm, bert, clip_model
):
    normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711])

    if arg_seed >= 0:
        torch.manual_seed(arg_seed)

    text_emb = bert.encode([arg_text] * arg_batch_size).to(device).float()
    text_blank = bert.encode([arg_negative] * arg_batch_size).to(device).float()

    text = clip.tokenize([arg_text] * arg_batch_size, truncate=True).to(device)
    text_clip_blank = clip.tokenize([arg_negative] * arg_batch_size, truncate=True).to(device)



    text_emb_clip = clip_model.encode_text(text)
    text_emb_clip_blank = clip_model.encode_text(text_clip_blank)
    make_cutouts = MakeCutouts(clip_model.visual.input_resolution, arg_cutn)
    text_emb_norm = text_emb_clip[0] / text_emb_clip[0].norm(dim=-1, keepdim=True)
    image_embed = None

    if arg_edit:
        w = arg_edit_width if arg_edit_width else arg_width
        h = arg_edit_height if arg_edit_height else arg_height

        arg_edit = arg_edit.convert('RGB')
        input_image_pil = arg_edit

        init_image_pil = input_image_pil.resize((arg_height, arg_width), Image.Resampling.LANCZOS)

        input_image_pil = ImageOps.fit(input_image_pil, (w, h))

        im = transforms.ToTensor()(input_image_pil).unsqueeze(0).to(device)

        init_image = (TF.to_tensor(init_image_pil).to(device).unsqueeze(0).mul(2).sub(1))

        im = 2*im-1
        im = ldm.encode(im).sample()

        y = arg_edit_y//8
        x = arg_edit_x//8

        input_image = torch.zeros(1, 4, arg_height//8, arg_width//8, device=device)

        ycrop = y + im.shape[2] - input_image.shape[2]
        xcrop = x + im.shape[3] - input_image.shape[3]

        ycrop = ycrop if ycrop > 0 else 0
        xcrop = xcrop if xcrop > 0 else 0

        input_image[0,:,y if y >=0 else 0:y+im.shape[2],x if x >=0 else 0:x+im.shape[3]] = im[:,:,0 if y > 0 else -y:im.shape[2]-ycrop,0 if x > 0 else -x:im.shape[3]-xcrop]

        input_image_pil = ldm.decode(input_image)
        input_image_pil = TF.to_pil_image(input_image_pil.squeeze(0).add(1).div(2).clamp(0, 1))

        input_image *= 0.18215

        new_mask = TF.resize(mask.unsqueeze(0).unsqueeze(0).to(device), (arg_width//8, arg_height//8))

        mask1 = (new_mask > 0.5)
        mask1 = mask1.float()

        input_image *= mask1

        image_embed = torch.cat(arg_batch_size*2*[input_image], dim=0).float()
    elif model_params['image_condition']:
        # using inpaint model but no image is provided
        image_embed = torch.zeros(arg_batch_size*2, 4, arg_height//8, arg_width//8, device=device)

    kwargs = {
        "context": torch.cat([text_emb, text_blank], dim=0).float(),
        "clip_embed": torch.cat([text_emb_clip, text_emb_clip_blank], dim=0).float() if model_params['clip_embed_dim'] else None,
        "image_embed": image_embed
    }

    # Create a classifier-free guidance sampling function
    def model_fn(x_t, ts, **kwargs):
        half = x_t[: len(x_t) // 2]
        combined = torch.cat([half, half], dim=0)
        model_out = model(combined, ts, **kwargs)
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + arg_guidance_scale * (cond_eps - uncond_eps)
        eps = torch.cat([half_eps, half_eps], dim=0)
        return torch.cat([eps, rest], dim=1)

    cur_t = None

    @torch.no_grad()
    def postprocess_fn(out, t):
        if mask is not None:
            background_stage_t = diffusion.q_sample(init_image, t[0])
            background_stage_t = torch.tile(
                background_stage_t, dims=(arg_batch_size, 1, 1, 1)
            )
            out["sample"] = out["sample"] * mask + background_stage_t * (1 - mask)
        return out

    # if arg_ddpm:
    #     sample_fn = diffusion.p_sample_loop_progressive
    # elif arg_ddim:
    #     sample_fn = diffusion.ddim_sample_loop_progressive
    # else:
    sample_fn = diffusion.plms_sample_loop_progressive

    def save_sample(i, sample):
        out_ims = []
        for k, image in enumerate(sample['pred_xstart'][:arg_batch_size]):
            image /= 0.18215
            im = image.unsqueeze(0)
            out = ldm.decode(im)
            metrics_accumulator.print_average_metric()

            for b in range(arg_batch_size):
                pred_image = sample["pred_xstart"][b]

                if arg_enforce_background:
                    new_mask = TF.resize(mask.unsqueeze(0).unsqueeze(0).to(device), (arg_width, arg_height))
                    pred_image = (
                        init_image[0] * new_mask[0] + out * (1 - new_mask[0])
                    )

                pred_image_pil = TF.to_pil_image(pred_image.squeeze(0).add(1).div(2).clamp(0, 1))
                out_ims.append(pred_image_pil)
        return out_ims
            

    all_saved_ims = []
    for i in range(arg_num_batches):
        cur_t = diffusion.num_timesteps - 1

        samples = sample_fn(
            model_fn,
            (arg_batch_size*2, 4, int(arg_height//8), int(arg_width//8)),
            clip_denoised=False,
            model_kwargs=kwargs,
            cond_fn=None,
            device=device,
            progress=True,
        )
    
        for j, sample in enumerate(samples):
            cur_t -= 1
            if j % 5 == 0 and j != diffusion.num_timesteps - 1:
                all_saved_ims += save_sample(i, sample)
        all_saved_ims += save_sample(i, sample)

    return all_saved_ims

def run_model(
    segmodel, model, diffusion, ldm, bert, clip_model, model_params,
    from_text, instruction, negative_prompt, original_img, seed, guidance_scale, clip_guidance_scale, cutn, l2_sim_lambda
):
    input_image = original_img

    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        transforms.Resize((256, 256)),
    ])
    img = transform(input_image).unsqueeze(0)

    with torch.no_grad():
        preds = segmodel(img.repeat(1,1,1,1), from_text)[0]

    mask = torch.sigmoid(preds[0][0])
    image = (mask.detach().cpu().numpy() * 255).astype(np.uint8) # cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)  
    ret, thresh = cv2.threshold(image, 100, 255, cv2.THRESH_TRUNC, image) 
    timg = np.array(thresh)
    x, y = timg.shape
    for row in range(x):
        for col in range(y):
            if (timg[row][col]) == 100:
                timg[row][col] = 255
            if (timg[row][col]) < 100:
                timg[row][col] = 0
    
    fulltensor = torch.full_like(mask, fill_value=255)
    bgtensor = fulltensor-timg
    mask = bgtensor / 255.0

    gc.collect()
    use_ddim = False
    use_ddpm = False
    all_saved_ims = do_run(
        seed, instruction, 1, 1, negative_prompt, cutn, input_image, 256, 256, 
        0, 0, 0, 0, mask, guidance_scale, True,
        1000, l2_sim_lambda, use_ddpm, use_ddim, True, clip_guidance_scale, False,
        model_params, model, diffusion, ldm, bert, clip_model
    )
        
    return all_saved_ims[-1]