Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,17 @@
|
|
1 |
import json
|
2 |
import random
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import spaces
|
7 |
import torch
|
8 |
from diffusers import DiffusionPipeline, LCMScheduler
|
|
|
9 |
|
10 |
# Load the JSON data
|
11 |
with open("sdxl_lora.json", "r") as file:
|
12 |
data = json.load(file)
|
13 |
-
sdxl_loras_raw = [
|
14 |
-
{
|
15 |
-
"image": item["image"],
|
16 |
-
"title": item["title"],
|
17 |
-
"repo": item["repo"],
|
18 |
-
"trigger_word": item["trigger_word"],
|
19 |
-
"weights": item["weights"],
|
20 |
-
"is_pivotal": item.get("is_pivotal", False),
|
21 |
-
"text_embedding_weights": item.get("text_embedding_weights", None),
|
22 |
-
"likes": item.get("likes", 0),
|
23 |
-
}
|
24 |
-
for item in data
|
25 |
-
]
|
26 |
-
|
27 |
-
# Sort the loras by likes
|
28 |
-
sdxl_loras_raw = sorted(sdxl_loras_raw, key=lambda x: x["likes"], reverse=True)
|
29 |
|
30 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
@@ -43,9 +29,33 @@ def update_selection(selected_state: gr.SelectData, gr_sdxl_loras):
|
|
43 |
return lora_id, trigger_word
|
44 |
|
45 |
def load_lora_for_style(style_repo):
|
46 |
-
pipe.unload_lora_weights()
|
47 |
pipe.load_lora_weights(style_repo, adapter_name="lora")
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
@spaces.GPU
|
50 |
def infer(
|
51 |
pre_prompt,
|
@@ -59,7 +69,6 @@ def infer(
|
|
59 |
user_lora_weight,
|
60 |
progress=gr.Progress(track_tqdm=True),
|
61 |
):
|
62 |
-
# Load the appropriate LoRA weights
|
63 |
load_lora_for_style(user_lora_selector)
|
64 |
|
65 |
if randomize_seed:
|
@@ -81,143 +90,131 @@ def infer(
|
|
81 |
return image
|
82 |
|
83 |
css = """
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
text-align: center;
|
86 |
-
display:block;
|
87 |
}
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
}
|
92 |
"""
|
93 |
|
94 |
-
if torch.cuda.is_available():
|
95 |
-
power_device = "GPU"
|
96 |
-
else:
|
97 |
-
power_device = "CPU"
|
98 |
-
|
99 |
with gr.Blocks(css=css) as demo:
|
100 |
gr.Markdown(
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
111 |
)
|
112 |
|
113 |
-
# Index of selected LoRA
|
114 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
115 |
-
# Serve as memory for currently loaded lora in pipe
|
116 |
gr_lora_id = gr.State(value="")
|
117 |
|
118 |
with gr.Row():
|
119 |
-
with gr.
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
gallery = gr.Gallery(
|
136 |
-
value=[(item["image"], item["title"]) for item in sdxl_loras_raw],
|
137 |
-
label="SDXL LoRA Gallery",
|
138 |
-
allow_preview=False,
|
139 |
-
columns=3,
|
140 |
-
elem_id="gallery",
|
141 |
-
show_share_button=False,
|
142 |
-
)
|
143 |
-
|
144 |
-
with gr.Column():
|
145 |
with gr.Row():
|
146 |
-
|
147 |
-
|
148 |
-
show_label=False,
|
149 |
-
max_lines=1,
|
150 |
-
placeholder="Enter your prompt",
|
151 |
-
container=False,
|
152 |
-
scale=5,
|
153 |
-
)
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
result = gr.Image(label="Result", show_label=False)
|
158 |
|
159 |
with gr.Accordion("Advanced Settings", open=False):
|
160 |
-
pre_prompt = gr.
|
161 |
label="Pre-Prompt",
|
162 |
-
show_label=True,
|
163 |
-
max_lines=1,
|
164 |
placeholder="Pre Prompt from the LoRA config",
|
165 |
-
|
166 |
-
scale=5,
|
167 |
)
|
168 |
|
169 |
-
seed = gr.Slider(
|
170 |
-
label="Seed",
|
171 |
-
minimum=0,
|
172 |
-
maximum=MAX_SEED,
|
173 |
-
step=1,
|
174 |
-
value=0,
|
175 |
-
)
|
176 |
-
|
177 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
178 |
-
|
179 |
with gr.Row():
|
180 |
-
|
181 |
-
label="
|
182 |
-
minimum=
|
183 |
-
maximum=
|
184 |
step=1,
|
185 |
-
value=
|
186 |
)
|
|
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
)
|
196 |
|
197 |
-
|
198 |
-
"
|
199 |
-
|
200 |
-
|
|
|
|
|
201 |
)
|
202 |
|
203 |
-
negative_prompt = gr.
|
204 |
label="Negative Prompt",
|
205 |
-
show_label=False,
|
206 |
-
max_lines=1,
|
207 |
placeholder="Enter a negative Prompt",
|
208 |
-
|
209 |
)
|
210 |
|
211 |
gr.on(
|
212 |
-
[
|
213 |
-
run_button.click,
|
214 |
-
seed.change,
|
215 |
-
randomize_seed.change,
|
216 |
-
prompt.submit,
|
217 |
-
negative_prompt.change,
|
218 |
-
negative_prompt.submit,
|
219 |
-
guidance_scale.change,
|
220 |
-
],
|
221 |
fn=infer,
|
222 |
inputs=[
|
223 |
pre_prompt,
|
@@ -228,24 +225,30 @@ with gr.Blocks(css=css) as demo:
|
|
228 |
negative_prompt,
|
229 |
guidance_scale,
|
230 |
user_lora_selector,
|
231 |
-
|
232 |
],
|
233 |
outputs=[result],
|
234 |
)
|
235 |
|
|
|
|
|
236 |
gallery.select(
|
237 |
fn=update_selection,
|
238 |
inputs=[gr_sdxl_loras],
|
239 |
-
outputs=[
|
240 |
-
user_lora_selector,
|
241 |
-
pre_prompt,
|
242 |
-
],
|
243 |
-
show_progress="hidden",
|
244 |
)
|
245 |
|
246 |
-
gr.Markdown("**Disclaimer:**")
|
247 |
gr.Markdown(
|
248 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
)
|
250 |
|
251 |
demo.queue().launch()
|
|
|
1 |
import json
|
2 |
import random
|
3 |
+
import requests
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import spaces
|
7 |
import torch
|
8 |
from diffusers import DiffusionPipeline, LCMScheduler
|
9 |
+
from PIL import Image
|
10 |
|
11 |
# Load the JSON data
|
12 |
with open("sdxl_lora.json", "r") as file:
|
13 |
data = json.load(file)
|
14 |
+
sdxl_loras_raw = sorted(data, key=lambda x: x["likes"], reverse=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
|
29 |
return lora_id, trigger_word
|
30 |
|
31 |
def load_lora_for_style(style_repo):
|
32 |
+
pipe.unload_lora_weights()
|
33 |
pipe.load_lora_weights(style_repo, adapter_name="lora")
|
34 |
|
35 |
+
def get_image(image_data):
|
36 |
+
if isinstance(image_data, str):
|
37 |
+
return image_data
|
38 |
+
|
39 |
+
if isinstance(image_data, dict):
|
40 |
+
local_path = image_data.get('local_path')
|
41 |
+
hf_url = image_data.get('hf_url')
|
42 |
+
else:
|
43 |
+
return None # or a default image path
|
44 |
+
|
45 |
+
try:
|
46 |
+
return local_path # Return the local path string
|
47 |
+
except:
|
48 |
+
try:
|
49 |
+
response = requests.get(hf_url)
|
50 |
+
if response.status_code == 200:
|
51 |
+
with open(local_path, 'wb') as f:
|
52 |
+
f.write(response.content)
|
53 |
+
return local_path # Return the local path string
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Failed to load image: {e}")
|
56 |
+
|
57 |
+
return None # or a default image path
|
58 |
+
|
59 |
@spaces.GPU
|
60 |
def infer(
|
61 |
pre_prompt,
|
|
|
69 |
user_lora_weight,
|
70 |
progress=gr.Progress(track_tqdm=True),
|
71 |
):
|
|
|
72 |
load_lora_for_style(user_lora_selector)
|
73 |
|
74 |
if randomize_seed:
|
|
|
90 |
return image
|
91 |
|
92 |
css = """
|
93 |
+
body {
|
94 |
+
background-color: #1a1a1a;
|
95 |
+
color: #ffffff;
|
96 |
+
}
|
97 |
+
.container {
|
98 |
+
max-width: 900px;
|
99 |
+
margin: auto;
|
100 |
+
padding: 20px;
|
101 |
+
}
|
102 |
+
h1, h2 {
|
103 |
+
color: #4CAF50;
|
104 |
text-align: center;
|
|
|
105 |
}
|
106 |
+
.gallery {
|
107 |
+
display: flex;
|
108 |
+
flex-wrap: wrap;
|
109 |
+
justify-content: center;
|
110 |
+
}
|
111 |
+
.gallery img {
|
112 |
+
margin: 10px;
|
113 |
+
border-radius: 10px;
|
114 |
+
transition: transform 0.3s ease;
|
115 |
+
}
|
116 |
+
.gallery img:hover {
|
117 |
+
transform: scale(1.05);
|
118 |
+
}
|
119 |
+
.gradio-slider input[type="range"] {
|
120 |
+
background-color: #4CAF50;
|
121 |
+
}
|
122 |
+
.gradio-button {
|
123 |
+
background-color: #4CAF50 !important;
|
124 |
}
|
125 |
"""
|
126 |
|
|
|
|
|
|
|
|
|
|
|
127 |
with gr.Blocks(css=css) as demo:
|
128 |
gr.Markdown(
|
129 |
+
"""
|
130 |
+
# β‘ FlashDiffusion: Araminta K's FlashLoRA Showcase β‘
|
131 |
+
|
132 |
+
This interactive demo showcases [Araminta K's models](https://huggingface.co/alvdansen) using [Flash Diffusion](https://gojasper.github.io/flash-diffusion-project/) technology.
|
133 |
+
|
134 |
+
## Acknowledgments
|
135 |
+
- Original Flash Diffusion technology by the Jasper AI team
|
136 |
+
- Based on the paper: [Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) by ClΓ©ment Chadebec, Onur Tasar, Eyal Benaroche and Benjamin Aubin
|
137 |
+
- Models showcased here are created by Araminta K at Alvdansen Labs
|
138 |
+
|
139 |
+
Explore the power of FlashLoRA with Araminta K's unique artistic styles!
|
140 |
+
"""
|
141 |
)
|
142 |
|
|
|
143 |
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
|
|
144 |
gr_lora_id = gr.State(value="")
|
145 |
|
146 |
with gr.Row():
|
147 |
+
with gr.Column(scale=2):
|
148 |
+
gallery = gr.Gallery(
|
149 |
+
value=[(img, title) for img, title in
|
150 |
+
((get_image(item["image"]), item["title"]) for item in sdxl_loras_raw)
|
151 |
+
if img is not None],
|
152 |
+
label="SDXL LoRA Gallery",
|
153 |
+
show_label=False,
|
154 |
+
elem_id="gallery",
|
155 |
+
columns=3,
|
156 |
+
height=600,
|
157 |
+
)
|
158 |
+
|
159 |
+
user_lora_selector = gr.Textbox(
|
160 |
+
label="Current Selected LoRA",
|
161 |
+
interactive=False,
|
162 |
+
)
|
163 |
+
|
164 |
+
with gr.Column(scale=3):
|
165 |
+
prompt = gr.Textbox(
|
166 |
+
label="Prompt",
|
167 |
+
placeholder="Enter your prompt",
|
168 |
+
lines=3,
|
169 |
+
)
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
with gr.Row():
|
172 |
+
run_button = gr.Button("Run", variant="primary")
|
173 |
+
clear_button = gr.Button("Clear")
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
result = gr.Image(label="Result", height=512)
|
|
|
|
|
176 |
|
177 |
with gr.Accordion("Advanced Settings", open=False):
|
178 |
+
pre_prompt = gr.Textbox(
|
179 |
label="Pre-Prompt",
|
|
|
|
|
180 |
placeholder="Pre Prompt from the LoRA config",
|
181 |
+
lines=2,
|
|
|
182 |
)
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
with gr.Row():
|
185 |
+
seed = gr.Slider(
|
186 |
+
label="Seed",
|
187 |
+
minimum=0,
|
188 |
+
maximum=MAX_SEED,
|
189 |
step=1,
|
190 |
+
value=0,
|
191 |
)
|
192 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
193 |
|
194 |
+
num_inference_steps = gr.Slider(
|
195 |
+
label="Number of inference steps",
|
196 |
+
minimum=4,
|
197 |
+
maximum=8,
|
198 |
+
step=1,
|
199 |
+
value=4,
|
200 |
+
)
|
|
|
201 |
|
202 |
+
guidance_scale = gr.Slider(
|
203 |
+
label="Guidance Scale",
|
204 |
+
minimum=1,
|
205 |
+
maximum=6,
|
206 |
+
step=0.5,
|
207 |
+
value=1,
|
208 |
)
|
209 |
|
210 |
+
negative_prompt = gr.Textbox(
|
211 |
label="Negative Prompt",
|
|
|
|
|
212 |
placeholder="Enter a negative Prompt",
|
213 |
+
lines=2,
|
214 |
)
|
215 |
|
216 |
gr.on(
|
217 |
+
[run_button.click, prompt.submit],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
fn=infer,
|
219 |
inputs=[
|
220 |
pre_prompt,
|
|
|
225 |
negative_prompt,
|
226 |
guidance_scale,
|
227 |
user_lora_selector,
|
228 |
+
gr.Slider(label="Selected LoRA Weight", minimum=0.5, maximum=3, step=0.1, value=1),
|
229 |
],
|
230 |
outputs=[result],
|
231 |
)
|
232 |
|
233 |
+
clear_button.click(lambda: "", outputs=[prompt, result])
|
234 |
+
|
235 |
gallery.select(
|
236 |
fn=update_selection,
|
237 |
inputs=[gr_sdxl_loras],
|
238 |
+
outputs=[user_lora_selector, pre_prompt],
|
|
|
|
|
|
|
|
|
239 |
)
|
240 |
|
|
|
241 |
gr.Markdown(
|
242 |
+
"""
|
243 |
+
## Unleash Your Creativity!
|
244 |
+
|
245 |
+
This showcase brings together the speed of Flash Diffusion and the artistic flair of Araminta K's models.
|
246 |
+
Craft your prompts, adjust the settings, and watch as AI brings your ideas to life in stunning detail.
|
247 |
+
|
248 |
+
Remember to use this tool ethically and respect copyright and individual privacy.
|
249 |
+
|
250 |
+
Enjoy exploring these unique artistic styles!
|
251 |
+
"""
|
252 |
)
|
253 |
|
254 |
demo.queue().launch()
|