Spaces:
Sleeping
Sleeping
import pytest | |
from medirag.cache.local import LocalSemanticCache | |
# Fixture to initialize the SemanticCaching object | |
def semantic_cache(): | |
# Initialize the SemanticCaching class with a test cache file | |
return LocalSemanticCache( | |
model_name="sentence-transformers/all-mpnet-base-v2", dimension=768, json_file="real_test_cache.json" | |
) | |
def test_save_and_lookup_in_cache(semantic_cache): | |
# Clear any existing cache data | |
semantic_cache.clear() | |
# Step 1: Lookup should return None for a question not in the cache | |
initial_lookup = semantic_cache.lookup("What is the capital of France?") | |
assert initial_lookup is None | |
# Step 2: Save a response to the cache | |
semantic_cache.save("What is the capital of France?", "Paris") | |
# Step 3: Lookup the same question; it should now return the cached response | |
cached_response = semantic_cache.lookup("What is the capital of France?") | |
assert cached_response is not None | |
assert cached_response == "Paris" | |
# Cleanup: Clear the cache after test | |
semantic_cache.clear() | |