import json import pickle import streamlit as st # from haystack.document_stores import FAISSDocumentStore from haystack.document_stores import InMemoryDocumentStore from transformers import DPRContextEncoder, DPRContextEncoderTokenizer from haystack.nodes import DensePassageRetriever from haystack.nodes import FARMReader from haystack.pipelines import ExtractiveQAPipeline st.title("DPR on Supreme Court Judgements (Capital Gain)") # with open("responses.json", 'r') as f: # data = json.load(f) # documents = [ # { # "content": doc["text"], # "meta": { # "name": doc["title"], # "url": doc["url"] # } # } for doc in data # ] # document_store = FAISSDocumentStore(embedding_dim=768, faiss_index_factory_str="Flat", sql_url="sqlite:///faiss_document_store.d") with open("inmemory_document_store.pkl", "rb") as f: document_store = pickle.load(f) # document_store.write_documents(documents) # document_store = FAISSDocumentStore.load(index_path="./faiss_index", config_path="./faiss_index.json") retriever = DensePassageRetriever( document_store=document_store, query_embedding_model="facebook/dpr-question_encoder-single-nq-base", passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base", ) # document_store.update_embeddings(retriever) # document_store.save(index_path="./faiss_index", config_path="./faiss_index.json") # with open("inmemory_document_store.pkl", "wb") as f: # pickle.dump(document_store, f) reader = FARMReader(model_name_or_path="deepset/bert-base-cased-squad2") pipeline = ExtractiveQAPipeline(reader=reader, retriever=retriever) query = st.text_input("Enter your query:", "") if query: with st.spinner("Searching..."): results = pipeline.run(query=query, params={"Retriever": {"top_k": 5}}) for answer in results['answers']: st.markdown(f"=====================\nAnswer: {answer.answer}\nContext: {answer.context}\nScore: {answer.score}") # query = st.text_input("Enter Question") # query = "What is the subject matter of the petition in the Sadanand S. Varde case?" # result = pipeline.run(query=query, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}) # for answer in result['answers']: # print(f"=====================\nAnswer: {answer.answer}\nContext: {answer.context}\nScore: {answer.score}")