amaye15
commited on
Commit
β’
e34d5e8
1
Parent(s):
d17cea3
App - V3 - Fully Complete
Browse files
app.py
CHANGED
@@ -5,11 +5,12 @@ import numpy as np
|
|
5 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
6 |
from uuid import uuid4
|
7 |
import os
|
8 |
-
from huggingface_hub import upload_folder
|
9 |
from PIL import Image as PILImage
|
10 |
from datasets import Dataset, Features, Array2D, Image
|
11 |
import shutil
|
12 |
-
import
|
|
|
13 |
|
14 |
MODEL = "facebook/sam2-hiera-large"
|
15 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -17,7 +18,7 @@ PREDICTOR = SAM2ImagePredictor.from_pretrained(MODEL, device=DEVICE)
|
|
17 |
|
18 |
DESTINATION_DS = "amaye15/object-segmentation"
|
19 |
|
20 |
-
login(os.getenv("TOKEN"))
|
21 |
|
22 |
IMAGE = None
|
23 |
MASKS = None
|
@@ -25,6 +26,21 @@ MASKED_IMAGES = None
|
|
25 |
INDEX = None
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def prompter(prompts):
|
29 |
|
30 |
image = np.array(prompts["image"]) # Convert the image to a numpy array
|
@@ -116,114 +132,139 @@ def save_selected_mask(image, mask, output_dir="output"):
|
|
116 |
|
117 |
shutil.rmtree(folder_path)
|
118 |
|
119 |
-
iframe_code = "Success
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
return iframe_code
|
122 |
|
123 |
-
# time.sleep(5)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
#
|
134 |
-
|
135 |
|
136 |
|
137 |
# Define the Gradio Blocks app
|
138 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
with gr.
|
141 |
-
gr.
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
|
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
# Input: ImagePrompter
|
149 |
-
image_input = ImagePrompter(show_label=False)
|
150 |
-
submit_button = gr.Button("Submit")
|
151 |
-
with gr.Row():
|
152 |
-
with gr.Column():
|
153 |
-
# Outputs: Up to 3 overlay images
|
154 |
-
image_output_1 = gr.Image(show_label=False)
|
155 |
-
with gr.Column():
|
156 |
-
image_output_2 = gr.Image(show_label=False)
|
157 |
-
with gr.Column():
|
158 |
-
image_output_3 = gr.Image(show_label=False)
|
159 |
-
|
160 |
-
# Dropdown for selecting the correct mask
|
161 |
-
with gr.Row():
|
162 |
-
mask_selector = gr.Radio(
|
163 |
-
label="Select the correct mask",
|
164 |
-
choices=["Mask 1", "Mask 2", "Mask 3"],
|
165 |
-
type="index",
|
166 |
-
)
|
167 |
-
# selected_mask_output = gr.Image(show_label=False)
|
168 |
-
|
169 |
-
save_button = gr.Button("Save Selected Mask and Image")
|
170 |
-
iframe_display = gr.Markdown()
|
171 |
-
|
172 |
-
# Define the action triggered by the submit button
|
173 |
-
submit_button.click(
|
174 |
-
fn=prompter,
|
175 |
-
inputs=image_input,
|
176 |
-
outputs=[image_output_1, image_output_2, image_output_3, gr.State()],
|
177 |
-
show_progress=True,
|
178 |
-
)
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
# inputs=(gr.State("source_dataset"), source),
|
214 |
-
# outputs=(source_display, iframe_display),
|
215 |
-
# )
|
216 |
-
|
217 |
-
# with gr.Column():
|
218 |
-
|
219 |
-
# destination = gr.Textbox(label="Destination Dataset")
|
220 |
-
# destination_display = gr.Markdown()
|
221 |
-
|
222 |
-
# destination.change(
|
223 |
-
# save_dataset_name,
|
224 |
-
# inputs=(gr.State("destination_dataset"), destination),
|
225 |
-
# outputs=destination_display,
|
226 |
-
# )
|
227 |
|
228 |
# Launch the Gradio app
|
229 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
6 |
from uuid import uuid4
|
7 |
import os
|
8 |
+
from huggingface_hub import upload_folder
|
9 |
from PIL import Image as PILImage
|
10 |
from datasets import Dataset, Features, Array2D, Image
|
11 |
import shutil
|
12 |
+
import random
|
13 |
+
from datasets import load_dataset
|
14 |
|
15 |
MODEL = "facebook/sam2-hiera-large"
|
16 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
18 |
|
19 |
DESTINATION_DS = "amaye15/object-segmentation"
|
20 |
|
21 |
+
# login(os.getenv("TOKEN"))
|
22 |
|
23 |
IMAGE = None
|
24 |
MASKS = None
|
|
|
26 |
INDEX = None
|
27 |
|
28 |
|
29 |
+
ds_name = ["amaye15/product_labels"] # "amaye15/Products-10k", "amaye15/receipts"
|
30 |
+
choices = ["test", "train"]
|
31 |
+
max_len = None
|
32 |
+
|
33 |
+
ds_stream = load_dataset(random.choice(ds_name), streaming=True)
|
34 |
+
|
35 |
+
|
36 |
+
ds_split = ds_stream[random.choice(choices)]
|
37 |
+
|
38 |
+
ds_iter = ds_split.iter(batch_size=1)
|
39 |
+
|
40 |
+
for idx, val in enumerate(ds_iter):
|
41 |
+
max_len = idx
|
42 |
+
|
43 |
+
|
44 |
def prompter(prompts):
|
45 |
|
46 |
image = np.array(prompts["image"]) # Convert the image to a numpy array
|
|
|
132 |
|
133 |
shutil.rmtree(folder_path)
|
134 |
|
135 |
+
iframe_code = """## Success! ππ€β
|
136 |
+
|
137 |
+
You've successfully contributed to the dataset.
|
138 |
+
|
139 |
+
Please note that because new data has been added to the dataset, it may take a couple of minutes to render.
|
140 |
+
|
141 |
+
Check it out here:
|
142 |
+
|
143 |
+
[Object Segmentation Dataset](https://huggingface.co/datasets/amaye15/object-segmentation)
|
144 |
+
"""
|
145 |
|
146 |
return iframe_code
|
147 |
|
|
|
148 |
|
149 |
+
def get_random_image():
|
150 |
+
"""Get a random image from the dataset."""
|
151 |
+
global max_len
|
152 |
+
random_idx = random.choice(range(max_len))
|
153 |
+
image_data = list(ds_split.skip(random_idx).take(1))[0]["pixel_values"]
|
154 |
+
formatted_image = {
|
155 |
+
"image": np.array(image_data),
|
156 |
+
"points": [],
|
157 |
+
} # Create the correct format
|
158 |
+
return formatted_image
|
159 |
|
160 |
|
161 |
# Define the Gradio Blocks app
|
162 |
with gr.Blocks() as demo:
|
163 |
+
gr.Markdown("# Object Segmentation- Image Point Collector and Mask Overlay Tool")
|
164 |
+
gr.Markdown(
|
165 |
+
"""
|
166 |
+
This application utilizes **Segment Anything V2 (SAM2)** to allow you to upload an image or select a random image from a dataset and interactively generate segmentation masks based on multiple points you select on the image.
|
167 |
+
|
168 |
+
### How It Works:
|
169 |
+
1. **Upload or Select an Image**: You can either upload your own image or use a random image from the dataset.
|
170 |
+
2. **Point Selection**: Click on the image to indicate points of interest. You can add multiple points, and these will be used collectively to generate segmentation masks using SAM2.
|
171 |
+
3. **Mask Generation**: The app will generate up to three different segmentation masks for the selected points, each displayed separately with a red overlay.
|
172 |
+
4. **Mask Selection**: Carefully review the generated masks and select the one that best fits your needs. **It's important to choose the correct mask, as your selection will be saved and used for further processing.**
|
173 |
+
5. **Save and Contribute**: Save the selected mask along with the image to a dataset, contributing to a shared dataset on Hugging Face.
|
174 |
+
|
175 |
+
**Disclaimer**: All images and masks you work with will be collected and stored in a public dataset. Please ensure that you are comfortable with your selections and the data you provide before saving.
|
176 |
+
|
177 |
+
This tool is particularly useful for creating precise object segmentation masks for computer vision tasks, such as training models or generating labeled datasets.
|
178 |
+
"""
|
179 |
+
)
|
180 |
|
181 |
+
with gr.Row():
|
182 |
+
with gr.Column():
|
183 |
+
image_input = gr.State()
|
184 |
+
# Input: ImagePrompter for uploaded image
|
185 |
+
upload_image_input = ImagePrompter(show_label=False)
|
186 |
+
|
187 |
+
random_image_button = gr.Button("Use Random Image")
|
188 |
+
|
189 |
+
submit_button = gr.Button("Submit")
|
190 |
+
|
191 |
+
with gr.Row():
|
192 |
+
with gr.Column():
|
193 |
+
# Outputs: Up to 3 overlay images
|
194 |
+
image_output_1 = gr.Image(show_label=False)
|
195 |
+
with gr.Column():
|
196 |
+
image_output_2 = gr.Image(show_label=False)
|
197 |
+
with gr.Column():
|
198 |
+
image_output_3 = gr.Image(show_label=False)
|
199 |
+
|
200 |
+
# Dropdown for selecting the correct mask
|
201 |
+
with gr.Row():
|
202 |
+
mask_selector = gr.Radio(
|
203 |
+
label="Select the correct mask",
|
204 |
+
choices=["Mask 1", "Mask 2", "Mask 3"],
|
205 |
+
type="index",
|
206 |
)
|
207 |
+
# selected_mask_output = gr.Image(show_label=False)
|
208 |
|
209 |
+
save_button = gr.Button("Save Selected Mask and Image")
|
210 |
+
iframe_display = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
+
# Logic for the random image button
|
213 |
+
random_image_button.click(
|
214 |
+
fn=get_random_image,
|
215 |
+
inputs=None,
|
216 |
+
outputs=upload_image_input, # Pass the formatted random image to ImagePrompter
|
217 |
+
)
|
218 |
|
219 |
+
# Logic to use uploaded image
|
220 |
+
upload_image_input.change(
|
221 |
+
fn=lambda img: img, inputs=upload_image_input, outputs=image_input
|
222 |
+
)
|
223 |
+
# Define the action triggered by the submit button
|
224 |
+
submit_button.click(
|
225 |
+
fn=prompter,
|
226 |
+
inputs=upload_image_input, # The final image input (whether uploaded or random)
|
227 |
+
outputs=[image_output_1, image_output_2, image_output_3, gr.State()],
|
228 |
+
show_progress=True,
|
229 |
+
)
|
230 |
+
|
231 |
+
# Define the action triggered by mask selection
|
232 |
+
mask_selector.change(
|
233 |
+
fn=select_mask,
|
234 |
+
inputs=[mask_selector, image_output_1, image_output_2, image_output_3],
|
235 |
+
outputs=gr.State(),
|
236 |
+
)
|
237 |
+
|
238 |
+
# Define the action triggered by the save button
|
239 |
+
save_button.click(
|
240 |
+
fn=save_selected_mask,
|
241 |
+
inputs=[gr.State(), gr.State()],
|
242 |
+
outputs=iframe_display,
|
243 |
+
show_progress=True,
|
244 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
# Launch the Gradio app
|
247 |
demo.launch()
|
248 |
+
|
249 |
+
|
250 |
+
# with gr.Column():
|
251 |
+
# source = gr.Textbox(label="Source Dataset")
|
252 |
+
# source_display = gr.Markdown()
|
253 |
+
# iframe_display = gr.HTML()
|
254 |
+
|
255 |
+
# source.change(
|
256 |
+
# save_dataset_name,
|
257 |
+
# inputs=(gr.State("source_dataset"), source),
|
258 |
+
# outputs=(source_display, iframe_display),
|
259 |
+
# )
|
260 |
+
|
261 |
+
# with gr.Column():
|
262 |
+
|
263 |
+
# destination = gr.Textbox(label="Destination Dataset")
|
264 |
+
# destination_display = gr.Markdown()
|
265 |
+
|
266 |
+
# destination.change(
|
267 |
+
# save_dataset_name,
|
268 |
+
# inputs=(gr.State("destination_dataset"), destination),
|
269 |
+
# outputs=destination_display,
|
270 |
+
# )
|