Spaces:
Sleeping
Sleeping
amazonaws-la
commited on
Commit
•
41548b6
1
Parent(s):
a1777e8
Update app.py
Browse files
app.py
CHANGED
@@ -18,44 +18,12 @@ if not torch.cuda.is_available():
|
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
21 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "
|
22 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
23 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
24 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
25 |
|
26 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
27 |
-
if torch.cuda.is_available():
|
28 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
29 |
-
pipe = DiffusionPipeline.from_pretrained(
|
30 |
-
"stabilityai/stable-diffusion-xl-base-1.0",
|
31 |
-
vae=vae,
|
32 |
-
torch_dtype=torch.float16,
|
33 |
-
use_safetensors=True,
|
34 |
-
variant="fp16",
|
35 |
-
)
|
36 |
-
if ENABLE_REFINER:
|
37 |
-
refiner = DiffusionPipeline.from_pretrained(
|
38 |
-
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
39 |
-
vae=vae,
|
40 |
-
torch_dtype=torch.float16,
|
41 |
-
use_safetensors=True,
|
42 |
-
variant="fp16",
|
43 |
-
)
|
44 |
-
|
45 |
-
if ENABLE_CPU_OFFLOAD:
|
46 |
-
pipe.enable_model_cpu_offload()
|
47 |
-
if ENABLE_REFINER:
|
48 |
-
refiner.enable_model_cpu_offload()
|
49 |
-
else:
|
50 |
-
pipe.to(device)
|
51 |
-
if ENABLE_REFINER:
|
52 |
-
refiner.to(device)
|
53 |
-
|
54 |
-
if USE_TORCH_COMPILE:
|
55 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
56 |
-
if ENABLE_REFINER:
|
57 |
-
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
|
58 |
-
|
59 |
|
60 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
61 |
if randomize_seed:
|
@@ -80,7 +48,45 @@ def generate(
|
|
80 |
num_inference_steps_base: int = 25,
|
81 |
num_inference_steps_refiner: int = 25,
|
82 |
apply_refiner: bool = False,
|
|
|
|
|
|
|
83 |
) -> PIL.Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
generator = torch.Generator().manual_seed(seed)
|
85 |
|
86 |
if not use_negative_prompt:
|
@@ -142,6 +148,9 @@ with gr.Blocks(css="style.css") as demo:
|
|
142 |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
143 |
)
|
144 |
with gr.Group():
|
|
|
|
|
|
|
145 |
with gr.Row():
|
146 |
prompt = gr.Text(
|
147 |
label="Prompt",
|
@@ -299,10 +308,13 @@ with gr.Blocks(css="style.css") as demo:
|
|
299 |
num_inference_steps_base,
|
300 |
num_inference_steps_refiner,
|
301 |
apply_refiner,
|
|
|
|
|
|
|
302 |
],
|
303 |
outputs=result,
|
304 |
api_name="run",
|
305 |
)
|
306 |
|
307 |
if __name__ == "__main__":
|
308 |
-
demo.queue(max_size=20).launch()
|
|
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
21 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
|
22 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
23 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
24 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
25 |
|
26 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
29 |
if randomize_seed:
|
|
|
48 |
num_inference_steps_base: int = 25,
|
49 |
num_inference_steps_refiner: int = 25,
|
50 |
apply_refiner: bool = False,
|
51 |
+
model = 'stabilityai/stable-diffusion-xl-base-1.0',
|
52 |
+
vaecall = 'madebyollin/sdxl-vae-fp16-fix',
|
53 |
+
lora = 'pierroromeu/lora-trained-xl-folder',
|
54 |
) -> PIL.Image.Image:
|
55 |
+
if torch.cuda.is_available():
|
56 |
+
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
57 |
+
# Substitua o valor dinâmico antes de chamar from_pretrained
|
58 |
+
pipe_model_name = model
|
59 |
+
pipe = DiffusionPipeline.from_pretrained(
|
60 |
+
pipe_model_name,
|
61 |
+
vae=vae,
|
62 |
+
torch_dtype=torch.float16,
|
63 |
+
use_safetensors=True,
|
64 |
+
)
|
65 |
+
if ENABLE_REFINER:
|
66 |
+
refiner_model_name = model
|
67 |
+
refiner = DiffusionPipeline.from_pretrained(
|
68 |
+
refiner_model_name,
|
69 |
+
vae=vae,
|
70 |
+
torch_dtype=torch.float16,
|
71 |
+
use_safetensors=True,
|
72 |
+
)
|
73 |
+
|
74 |
+
pipe.load_lora_weights(lora)
|
75 |
+
|
76 |
+
if ENABLE_CPU_OFFLOAD:
|
77 |
+
pipe.enable_model_cpu_offload()
|
78 |
+
if ENABLE_REFINER:
|
79 |
+
refiner.enable_model_cpu_offload()
|
80 |
+
else:
|
81 |
+
pipe.to(device)
|
82 |
+
if ENABLE_REFINER:
|
83 |
+
refiner.to(device)
|
84 |
+
|
85 |
+
if USE_TORCH_COMPILE:
|
86 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
87 |
+
if ENABLE_REFINER:
|
88 |
+
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
|
89 |
+
|
90 |
generator = torch.Generator().manual_seed(seed)
|
91 |
|
92 |
if not use_negative_prompt:
|
|
|
148 |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
149 |
)
|
150 |
with gr.Group():
|
151 |
+
model = gr.Text(label='Modelo')
|
152 |
+
vaecall = gr.Text(label='VAE')
|
153 |
+
lora = gr.Text(label='LoRA')
|
154 |
with gr.Row():
|
155 |
prompt = gr.Text(
|
156 |
label="Prompt",
|
|
|
308 |
num_inference_steps_base,
|
309 |
num_inference_steps_refiner,
|
310 |
apply_refiner,
|
311 |
+
model,
|
312 |
+
vaecall,
|
313 |
+
lora,
|
314 |
],
|
315 |
outputs=result,
|
316 |
api_name="run",
|
317 |
)
|
318 |
|
319 |
if __name__ == "__main__":
|
320 |
+
demo.queue(max_size=20).launch()
|