Spaces:
Sleeping
Sleeping
amazonaws-la
commited on
Commit
•
5e11dd4
1
Parent(s):
a1bc4f0
Update app.py
Browse files
app.py
CHANGED
@@ -7,12 +7,10 @@ import random
|
|
7 |
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
|
|
10 |
import spaces
|
11 |
-
import requests
|
12 |
import torch
|
13 |
-
import
|
14 |
-
from io import BytesIO
|
15 |
-
from diffusers import StableDiffusionImg2ImgPipeline, AutoencoderKL, DiffusionPipeline
|
16 |
|
17 |
DESCRIPTION = "# SDXL"
|
18 |
if not torch.cuda.is_available():
|
@@ -58,12 +56,11 @@ def generate(
|
|
58 |
vaecall = 'stabilityai/sd-vae-ft-mse',
|
59 |
lora = 'amazonaws-la/juliette',
|
60 |
lora_scale: float = 0.7,
|
61 |
-
url = "https://m.media-amazon.com/images/I/81zPcrN6m+L.jpg",
|
62 |
) -> PIL.Image.Image:
|
63 |
if torch.cuda.is_available():
|
64 |
-
|
65 |
-
if not use_vae:
|
66 |
-
pipe =
|
67 |
|
68 |
if use_vae:
|
69 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
@@ -72,7 +69,7 @@ def generate(
|
|
72 |
if use_lora:
|
73 |
pipe.load_lora_weights(lora)
|
74 |
pipe.fuse_lora(lora_scale=0.7)
|
75 |
-
|
76 |
if ENABLE_CPU_OFFLOAD:
|
77 |
pipe.enable_model_cpu_offload()
|
78 |
|
@@ -102,7 +99,6 @@ def generate(
|
|
102 |
guidance_scale=guidance_scale_base,
|
103 |
num_inference_steps=num_inference_steps_base,
|
104 |
generator=generator,
|
105 |
-
image=url,
|
106 |
output_type="pil",
|
107 |
).images[0]
|
108 |
else:
|
|
|
7 |
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
+
import PIL.Image
|
11 |
import spaces
|
|
|
12 |
import torch
|
13 |
+
from diffusers import AutoencoderKL, DiffusionPipeline
|
|
|
|
|
14 |
|
15 |
DESCRIPTION = "# SDXL"
|
16 |
if not torch.cuda.is_available():
|
|
|
56 |
vaecall = 'stabilityai/sd-vae-ft-mse',
|
57 |
lora = 'amazonaws-la/juliette',
|
58 |
lora_scale: float = 0.7,
|
|
|
59 |
) -> PIL.Image.Image:
|
60 |
if torch.cuda.is_available():
|
61 |
+
|
62 |
+
if not use_vae:
|
63 |
+
pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
|
64 |
|
65 |
if use_vae:
|
66 |
vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
|
|
|
69 |
if use_lora:
|
70 |
pipe.load_lora_weights(lora)
|
71 |
pipe.fuse_lora(lora_scale=0.7)
|
72 |
+
|
73 |
if ENABLE_CPU_OFFLOAD:
|
74 |
pipe.enable_model_cpu_offload()
|
75 |
|
|
|
99 |
guidance_scale=guidance_scale_base,
|
100 |
num_inference_steps=num_inference_steps_base,
|
101 |
generator=generator,
|
|
|
102 |
output_type="pil",
|
103 |
).images[0]
|
104 |
else:
|