amazonaws-sp commited on
Commit
d9c1ade
1 Parent(s): 87d3aad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -16
app.py CHANGED
@@ -2,17 +2,15 @@
2
 
3
  from __future__ import annotations
4
 
5
- import requests
6
  import os
7
  import random
8
 
9
  import gradio as gr
10
  import numpy as np
 
11
  import spaces
12
  import torch
13
- from PIL import Image
14
- from io import BytesIO
15
- from diffusers import AutoencoderKL, DiffusionPipeline, StableDiffusionImg2ImgPipeline
16
 
17
  DESCRIPTION = "# Run any LoRA or SD Model"
18
  if not torch.cuda.is_available():
@@ -50,22 +48,16 @@ def generate(
50
  num_inference_steps_base: int = 25,
51
  use_vae: bool = False,
52
  use_lora: bool = False,
53
- model = 'runwayml/stable-diffusion-v1-5',
54
  vaecall = 'madebyollin/sdxl-vae-fp16-fix',
55
  lora = '',
56
  lora_scale: float = 0.7,
57
- ):
58
  if torch.cuda.is_available():
59
 
60
  if not use_vae:
61
- pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
62
 
63
- url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
64
-
65
- response = requests.get(url)
66
- init_image = Image.open(BytesIO(response.content)).convert("RGB")
67
- init_image = init_image.resize((768, 512))
68
-
69
  if use_vae:
70
  vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
71
  pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
@@ -92,9 +84,8 @@ def generate(
92
  if not use_negative_prompt_2:
93
  negative_prompt_2 = None # type: ignore
94
 
95
- images = pipe(
96
  prompt=prompt,
97
- image=init_image,
98
  negative_prompt=negative_prompt,
99
  prompt_2=prompt_2,
100
  negative_prompt_2=negative_prompt_2,
@@ -105,7 +96,7 @@ def generate(
105
  generator=generator,
106
  output_type="pil",
107
  ).images[0]
108
- return images
109
 
110
  examples = [
111
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
@@ -129,6 +120,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
129
  step=0.01,
130
  value=0.7,
131
  )
 
132
  with gr.Row():
133
  prompt = gr.Text(
134
  placeholder="Input prompt",
 
2
 
3
  from __future__ import annotations
4
 
 
5
  import os
6
  import random
7
 
8
  import gradio as gr
9
  import numpy as np
10
+ import PIL.Image
11
  import spaces
12
  import torch
13
+ from diffusers import AutoencoderKL, DiffusionPipeline
 
 
14
 
15
  DESCRIPTION = "# Run any LoRA or SD Model"
16
  if not torch.cuda.is_available():
 
48
  num_inference_steps_base: int = 25,
49
  use_vae: bool = False,
50
  use_lora: bool = False,
51
+ model = 'stabilityai/stable-diffusion-xl-base-1.0',
52
  vaecall = 'madebyollin/sdxl-vae-fp16-fix',
53
  lora = '',
54
  lora_scale: float = 0.7,
55
+ ) -> PIL.Image.Image:
56
  if torch.cuda.is_available():
57
 
58
  if not use_vae:
59
+ pipe = DiffusionPipeline.from_pretrained(model, torch_dtype=torch.float16)
60
 
 
 
 
 
 
 
61
  if use_vae:
62
  vae = AutoencoderKL.from_pretrained(vaecall, torch_dtype=torch.float16)
63
  pipe = DiffusionPipeline.from_pretrained(model, vae=vae, torch_dtype=torch.float16)
 
84
  if not use_negative_prompt_2:
85
  negative_prompt_2 = None # type: ignore
86
 
87
+ return pipe(
88
  prompt=prompt,
 
89
  negative_prompt=negative_prompt,
90
  prompt_2=prompt_2,
91
  negative_prompt_2=negative_prompt_2,
 
96
  generator=generator,
97
  output_type="pil",
98
  ).images[0]
99
+ return image
100
 
101
  examples = [
102
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
 
120
  step=0.01,
121
  value=0.7,
122
  )
123
+ upload = gr.Image(label='Image2Image')
124
  with gr.Row():
125
  prompt = gr.Text(
126
  placeholder="Input prompt",