Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
import time | |
import sys | |
import traceback | |
# Global variables to store error information | |
error_message = "" | |
# Load the model and tokenizer from Hugging Face | |
model_name = "ambrosfitz/history-qa-flan-t5-large" | |
try: | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
except Exception as e: | |
error_message = f"Error loading model or tokenizer: {str(e)}\n{traceback.format_exc()}" | |
print(error_message) | |
def generate_qa(text, max_length=512): | |
try: | |
input_text = f"Generate a history question and answer based on this text: {text}" | |
input_ids = tokenizer(input_text, return_tensors="pt", max_length=max_length, truncation=True).input_ids.to(device) | |
with torch.no_grad(): | |
outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7) | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Parse the generated text | |
parts = generated_text.split("Question: ") | |
if len(parts) > 1: | |
qa_parts = parts[1].split("Answer: ") | |
question = qa_parts[0].strip() | |
answer = qa_parts[1].strip() if len(qa_parts) > 1 else "No answer provided." | |
return f"Question: {question}\n\nAnswer: {answer}" | |
else: | |
return "Unable to generate a proper question and answer. Please try again with a different input." | |
except Exception as e: | |
return f"An error occurred: {str(e)}\n{traceback.format_exc()}" | |
def slow_qa(message, history): | |
try: | |
full_response = generate_qa(message) | |
for i in range(len(full_response)): | |
time.sleep(0.01) | |
yield full_response[:i+1] | |
except Exception as e: | |
yield f"An error occurred: {str(e)}\n{traceback.format_exc()}" | |
# Create and launch the Gradio interface | |
try: | |
iface = gr.ChatInterface( | |
slow_qa, | |
chatbot=gr.Chatbot(height=500), | |
textbox=gr.Textbox(placeholder="Enter historical text here...", container=False, scale=7), | |
title="History Q&A Generator (FLAN-T5)", | |
description="Enter a piece of historical text, and the model will generate a related question and answer.", | |
theme="soft", | |
examples=[ | |
"The American Revolution was a colonial revolt that took place between 1765 and 1783.", | |
"World War II was a global conflict that lasted from 1939 to 1945, involving many of the world's nations.", | |
"The Renaissance was a period of cultural, artistic, political, and economic revival following the Middle Ages." | |
], | |
cache_examples=False, | |
retry_btn="Regenerate", | |
undo_btn="Remove last", | |
clear_btn="Clear", | |
) | |
if error_message: | |
print("Launching interface with error message.") | |
else: | |
print("Launching interface normally.") | |
iface.launch(debug=True) | |
except Exception as e: | |
print(f"An error occurred while creating or launching the interface: {str(e)}\n{traceback.format_exc()}") |