import gradio as gr import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import time import sys import traceback # Global variables to store error information error_message = "" # Global variables for model and tokenizer model = None tokenizer = None device = None # Load the model and tokenizer from Hugging Face model_name = "ambrosfitz/history-qa-flan-t5-large" try: global model, tokenizer, device model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) except Exception as e: error_message = f"Error loading model or tokenizer: {str(e)}\n{traceback.format_exc()}" print(error_message) def generate_qa(text, max_length=512): global model, tokenizer, device try: input_text = f"Generate a history question and answer based on this text: {text}" input_ids = tokenizer(input_text, return_tensors="pt", max_length=max_length, truncation=True).input_ids.to(device) with torch.no_grad(): outputs = model.generate(input_ids, max_length=max_length, num_return_sequences=1, do_sample=True, temperature=0.7) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Parse the generated text parts = generated_text.split("Question: ") if len(parts) > 1: qa_parts = parts[1].split("Answer: ") question = qa_parts[0].strip() answer = qa_parts[1].strip() if len(qa_parts) > 1 else "No answer provided." return f"Question: {question}\n\nAnswer: {answer}" else: return "Unable to generate a proper question and answer. Please try again with a different input." except Exception as e: return f"An error occurred: {str(e)}\n{traceback.format_exc()}" def slow_qa(message, history): try: full_response = generate_qa(message) for i in range(len(full_response)): time.sleep(0.01) yield full_response[:i+1] except Exception as e: yield f"An error occurred: {str(e)}\n{traceback.format_exc()}" # Create and launch the Gradio interface try: iface = gr.ChatInterface( slow_qa, chatbot=gr.Chatbot(height=500), textbox=gr.Textbox(placeholder="Enter historical text here...", container=False, scale=7), title="History Q&A Generator (FLAN-T5)", description="Enter a piece of historical text, and the model will generate a related question and answer.", theme="soft", examples=[ "The American Revolution was a colonial revolt that took place between 1765 and 1783.", "World War II was a global conflict that lasted from 1939 to 1945, involving many of the world's nations.", "The Renaissance was a period of cultural, artistic, political, and economic revival following the Middle Ages." ], cache_examples=False, retry_btn="Regenerate", undo_btn="Remove last", clear_btn="Clear", ) if error_message: print("Launching interface with error message.") else: print("Launching interface normally.") iface.launch(debug=True) except Exception as e: print(f"An error occurred while creating or launching the interface: {str(e)}\n{traceback.format_exc()}")