File size: 5,773 Bytes
0124826
 
 
 
b3812f7
1d40f41
b3812f7
 
 
 
 
 
7f45569
 
bbaefb7
7f45569
bbaefb7
7f45569
 
2142ea2
 
ccf495a
2142ea2
 
 
0124826
2142ea2
0124826
2142ea2
 
 
 
 
7663981
0124826
 
 
2142ea2
 
0124826
2142ea2
0124826
 
 
2142ea2
0124826
 
 
2142ea2
0124826
 
2142ea2
0124826
 
2142ea2
 
0124826
 
ccf495a
 
 
0124826
 
2142ea2
0124826
 
 
2142ea2
0124826
2142ea2
0124826
26b5772
 
 
 
 
2142ea2
 
 
 
 
 
 
 
0124826
2142ea2
 
 
 
 
0124826
ccf495a
0124826
2142ea2
ccf495a
2142ea2
 
ccf495a
 
 
 
0124826
2142ea2
 
35fe8b4
 
 
 
 
 
 
 
 
 
 
3743bb7
0052f0c
 
3743bb7
0052f0c
 
 
 
3743bb7
35fe8b4
 
 
 
 
 
 
 
 
3743bb7
 
 
 
 
 
 
 
 
35fe8b4
 
 
 
 
 
 
 
 
 
cda5fca
 
 
 
35fe8b4
 
 
 
0124826
 
2142ea2
 
 
 
4a2ddeb
2142ea2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid

# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond

# Load the model outside of the GPU-decorated function
def load_model():
    
    model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
    print("Loading model...Done")
    return model, model_config

# Function to set up, generate, and process the audio
@spaces.GPU(duration=120)  # Allocate GPU only when this function is called
def generate_audio(prompt, sampler_type_dropdown, seconds_total=30, steps=100, cfg_scale=7,sigma_min_slider=0.3,sigma_max_slider=500):
    print(f"Prompt received: {prompt}")
    print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"Using device: {device}")

    # Fetch the Hugging Face token from the environment variable
    hf_token = os.getenv('HF_TOKEN')
    print(f"Hugging Face token: {hf_token}")

    # Use pre-loaded model and configuration
    model, model_config = load_model()
    sample_rate = model_config["sample_rate"]
    sample_size = model_config["sample_size"]

    print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")

    model = model.to(device)
    print("Model moved to device.")

    # Set up text and timing conditioning
    conditioning = [{
        "prompt": prompt,
        "seconds_start": 0,
        "seconds_total": seconds_total
    }]
    print(f"Conditioning: {conditioning}")

    # Generate stereo audio
    print("Generating audio...")
    output = generate_diffusion_cond(
        model,
        steps=steps,
        cfg_scale=cfg_scale,
        conditioning=conditioning,
        sample_size=sample_size,
        sigma_min=sigma_min_slider,
        sigma_max=sigma_max_slider,
        sampler_type=sampler_type_dropdown,#"dpmpp-3m-sde",
        device=device
    )
    print("Audio generated.")

    # Rearrange audio batch to a single sequence
    output = rearrange(output, "b d n -> d (b n)")
    print("Audio rearranged.")

    # Peak normalize, clip, convert to int16
    output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
    
    max_length = sample_rate * seconds_total
    if output.shape[1] > max_length:
        output = output[:, :max_length]
        print(f"Audio trimmed to {seconds_total} seconds.")

    # Generate a unique filename for the output
    unique_filename = f"output_{uuid.uuid4().hex}.wav"
    print(f"Saving audio to file: {unique_filename}")

    # Save to file
    torchaudio.save(unique_filename, output, sample_rate)
    print(f"Audio saved: {unique_filename}")

    # Return the path to the generated audio file
    return unique_filename

# Setting up the Gradio Interface
interface = gr.Interface(
    fn=generate_audio,
    
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
        gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-3m-sde"),
        gr.Slider(0, 47, value=30, label="Duration in Seconds"),
        gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
        gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale"),        
        gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.3, label="Sigma min"),
        gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma max"),

    ],
    outputs=gr.Audio(type="filepath", label="Generated Audio"),
    title="Stable Audio Generator",
    description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0.",
    examples=[
    [
        "Create a serene soundscape of a quiet beach at sunset.",  # Text prompt
        "dpmpp-2m-sde",  # Sampler type
        45,  # Duration in Seconds
        100,  # Number of Diffusion Steps
        10,  # CFG Scale
        0.5,  # Sigma min
        800  # Sigma max
    ],
    [
        "clapping",  # Text prompt
        "dpmpp-3m-sde",  # Sampler type
        30,  # Duration in Seconds
        100,  # Number of Diffusion Steps
        7,  # CFG Scale
        0.5,  # Sigma min
        500  # Sigma max
    ],
    [
        "Simulate a forest ambiance with birds chirping and wind rustling through the leaves.",  # Text prompt
        "k-dpm-fast",  # Sampler type
        60,  # Duration in Seconds
        140,  # Number of Diffusion Steps
        7.5,  # CFG Scale
        0.3,  # Sigma min
        700  # Sigma max
    ],
    [
        "Recreate a gentle rainfall with distant thunder.",  # Text prompt
        "dpmpp-3m-sde",  # Sampler type
        35,  # Duration in Seconds
        110,  # Number of Diffusion Steps
        8,  # CFG Scale
        0.1,  # Sigma min
        500  # Sigma max
    ],
    [
        "Imagine a jazz cafe environment with soft music and ambient chatter.",  # Text prompt
        "k-lms",  # Sampler type
        25,  # Duration in Seconds
        90,  # Number of Diffusion Steps
        6,  # CFG Scale
        0.4,  # Sigma min
        650  # Sigma max
    ],
    ["Rock beat played in a treated studio, session drumming on an acoustic kit.",
      "dpmpp-2m-sde",  # Sampler type
        30,  # Duration in Seconds
        100,  # Number of Diffusion Steps
        7,  # CFG Scale
        0.3,  # Sigma min
        500  # Sigma max
    ]
    ]
)

# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()

# Launch the Interface
interface.queue(max_size=10).launch()