Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,773 Bytes
0124826 b3812f7 1d40f41 b3812f7 7f45569 bbaefb7 7f45569 bbaefb7 7f45569 2142ea2 ccf495a 2142ea2 0124826 2142ea2 0124826 2142ea2 7663981 0124826 2142ea2 0124826 2142ea2 0124826 2142ea2 0124826 2142ea2 0124826 2142ea2 0124826 2142ea2 0124826 ccf495a 0124826 2142ea2 0124826 2142ea2 0124826 2142ea2 0124826 26b5772 2142ea2 0124826 2142ea2 0124826 ccf495a 0124826 2142ea2 ccf495a 2142ea2 ccf495a 0124826 2142ea2 35fe8b4 3743bb7 0052f0c 3743bb7 0052f0c 3743bb7 35fe8b4 3743bb7 35fe8b4 cda5fca 35fe8b4 0124826 2142ea2 4a2ddeb 2142ea2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
# Load the model outside of the GPU-decorated function
def load_model():
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
print("Loading model...Done")
return model, model_config
# Function to set up, generate, and process the audio
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
def generate_audio(prompt, sampler_type_dropdown, seconds_total=30, steps=100, cfg_scale=7,sigma_min_slider=0.3,sigma_max_slider=500):
print(f"Prompt received: {prompt}")
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Fetch the Hugging Face token from the environment variable
hf_token = os.getenv('HF_TOKEN')
print(f"Hugging Face token: {hf_token}")
# Use pre-loaded model and configuration
model, model_config = load_model()
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
model = model.to(device)
print("Model moved to device.")
# Set up text and timing conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
# Generate stereo audio
print("Generating audio...")
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=sigma_min_slider,
sigma_max=sigma_max_slider,
sampler_type=sampler_type_dropdown,#"dpmpp-3m-sde",
device=device
)
print("Audio generated.")
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
print("Audio rearranged.")
# Peak normalize, clip, convert to int16
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
max_length = sample_rate * seconds_total
if output.shape[1] > max_length:
output = output[:, :max_length]
print(f"Audio trimmed to {seconds_total} seconds.")
# Generate a unique filename for the output
unique_filename = f"output_{uuid.uuid4().hex}.wav"
print(f"Saving audio to file: {unique_filename}")
# Save to file
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
# Return the path to the generated audio file
return unique_filename
# Setting up the Gradio Interface
interface = gr.Interface(
fn=generate_audio,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-3m-sde"),
gr.Slider(0, 47, value=30, label="Duration in Seconds"),
gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale"),
gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.3, label="Sigma min"),
gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma max"),
],
outputs=gr.Audio(type="filepath", label="Generated Audio"),
title="Stable Audio Generator",
description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0.",
examples=[
[
"Create a serene soundscape of a quiet beach at sunset.", # Text prompt
"dpmpp-2m-sde", # Sampler type
45, # Duration in Seconds
100, # Number of Diffusion Steps
10, # CFG Scale
0.5, # Sigma min
800 # Sigma max
],
[
"clapping", # Text prompt
"dpmpp-3m-sde", # Sampler type
30, # Duration in Seconds
100, # Number of Diffusion Steps
7, # CFG Scale
0.5, # Sigma min
500 # Sigma max
],
[
"Simulate a forest ambiance with birds chirping and wind rustling through the leaves.", # Text prompt
"k-dpm-fast", # Sampler type
60, # Duration in Seconds
140, # Number of Diffusion Steps
7.5, # CFG Scale
0.3, # Sigma min
700 # Sigma max
],
[
"Recreate a gentle rainfall with distant thunder.", # Text prompt
"dpmpp-3m-sde", # Sampler type
35, # Duration in Seconds
110, # Number of Diffusion Steps
8, # CFG Scale
0.1, # Sigma min
500 # Sigma max
],
[
"Imagine a jazz cafe environment with soft music and ambient chatter.", # Text prompt
"k-lms", # Sampler type
25, # Duration in Seconds
90, # Number of Diffusion Steps
6, # CFG Scale
0.4, # Sigma min
650 # Sigma max
],
["Rock beat played in a treated studio, session drumming on an acoustic kit.",
"dpmpp-2m-sde", # Sampler type
30, # Duration in Seconds
100, # Number of Diffusion Steps
7, # CFG Scale
0.3, # Sigma min
500 # Sigma max
]
]
)
# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()
# Launch the Interface
interface.queue(max_size=10).launch()
|