File size: 3,915 Bytes
0124826
 
 
 
b3812f7
1d40f41
b3812f7
 
 
 
 
 
7f45569
 
bbaefb7
7f45569
bbaefb7
7f45569
 
2142ea2
 
ccf495a
2142ea2
 
 
0124826
2142ea2
0124826
2142ea2
 
 
 
 
7663981
0124826
 
 
2142ea2
 
0124826
2142ea2
0124826
 
 
2142ea2
0124826
 
 
2142ea2
0124826
 
2142ea2
0124826
 
2142ea2
 
0124826
 
ccf495a
 
 
0124826
 
2142ea2
0124826
 
 
2142ea2
0124826
2142ea2
0124826
2142ea2
 
 
 
 
 
 
 
 
0124826
2142ea2
 
 
 
 
0124826
ccf495a
0124826
2142ea2
ccf495a
2142ea2
 
ccf495a
 
 
 
0124826
2142ea2
 
 
0124826
 
2142ea2
 
 
 
4a2ddeb
2142ea2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid

# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond

# Load the model outside of the GPU-decorated function
def load_model():
    
    model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
    print("Loading model...Done")
    return model, model_config

# Function to set up, generate, and process the audio
@spaces.GPU(duration=120)  # Allocate GPU only when this function is called
def generate_audio(prompt, sampler_type_dropdown, seconds_total=30, steps=100, cfg_scale=7,sigma_min_slider=0.3,sigma_max_slider=500):
    print(f"Prompt received: {prompt}")
    print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"Using device: {device}")

    # Fetch the Hugging Face token from the environment variable
    hf_token = os.getenv('HF_TOKEN')
    print(f"Hugging Face token: {hf_token}")

    # Use pre-loaded model and configuration
    model, model_config = load_model()
    sample_rate = model_config["sample_rate"]
    sample_size = model_config["sample_size"]

    print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")

    model = model.to(device)
    print("Model moved to device.")

    # Set up text and timing conditioning
    conditioning = [{
        "prompt": prompt,
        "seconds_start": 0,
        "seconds_total": seconds_total
    }]
    print(f"Conditioning: {conditioning}")

    # Generate stereo audio
    print("Generating audio...")
    output = generate_diffusion_cond(
        model,
        steps=steps,
        cfg_scale=cfg_scale,
        conditioning=conditioning,
        sample_size=sample_size,
        sigma_min=sigma_min_slider,
        sigma_max=sigma_max_slider,
        sampler_type=sampler_type_dropdown,#"dpmpp-3m-sde",
        device=device
    )
    print("Audio generated.")

    # Rearrange audio batch to a single sequence
    output = rearrange(output, "b d n -> d (b n)")
    print("Audio rearranged.")

    # Peak normalize, clip, convert to int16
    output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
    print("Audio normalized and converted.")

    # Generate a unique filename for the output
    unique_filename = f"output_{uuid.uuid4().hex}.wav"
    print(f"Saving audio to file: {unique_filename}")

    # Save to file
    torchaudio.save(unique_filename, output, sample_rate)
    print(f"Audio saved: {unique_filename}")

    # Return the path to the generated audio file
    return unique_filename

# Setting up the Gradio Interface
interface = gr.Interface(
    fn=generate_audio,
    
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
        gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-3m-sde"),
        gr.Slider(0, 47, value=30, label="Duration in Seconds"),
        gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
        gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale"),        
        gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.3, label="Sigma min"),
        gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma max"),

    ],
    outputs=gr.Audio(type="filepath", label="Generated Audio"),
    title="Stable Audio Generator",
    description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0."
)

# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()

# Launch the Interface
interface.queue(max_size=10).launch()