Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torchaudio | |
from einops import rearrange | |
import gradio as gr | |
import spaces | |
import os | |
import uuid | |
# Importing the model-related functions | |
from stable_audio_tools import get_pretrained_model | |
from stable_audio_tools.inference.generation import generate_diffusion_cond | |
PAGE_SIZE = 10 | |
FILE_DIR_PATH = "/data" | |
theme = gr.themes.Base( | |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
# Load the model outside of the GPU-decorated function | |
def load_model(): | |
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0") | |
print("Loading model...Done") | |
return model, model_config | |
# Function to set up, generate, and process the audio | |
# Allocate GPU only when this function is called | |
def generate_audio(prompt, sampler_type_dropdown, seconds_total=30, steps=100, cfg_scale=7,sigma_min_slider=0.3,sigma_max_slider=500, progress=gr.Progress(track_tqdm=True)): | |
print(f"Prompt received: {prompt}") | |
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {device}") | |
# Fetch the Hugging Face token from the environment variable | |
hf_token = os.getenv('HF_TOKEN') | |
print(f"Hugging Face token: {hf_token}") | |
# Use pre-loaded model and configuration | |
model, model_config = load_model() | |
sample_rate = model_config["sample_rate"] | |
sample_size = model_config["sample_size"] | |
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}") | |
model = model.to(device) | |
print("Model moved to device.") | |
# Set up text and timing conditioning | |
conditioning = [{ | |
"prompt": prompt, | |
"seconds_start": 0, | |
"seconds_total": seconds_total | |
}] | |
print(f"Conditioning: {conditioning}") | |
# Generate stereo audio | |
print("Generating audio...") | |
output = generate_diffusion_cond( | |
model, | |
steps=steps, | |
cfg_scale=cfg_scale, | |
conditioning=conditioning, | |
sample_size=sample_size, | |
sigma_min=sigma_min_slider, | |
sigma_max=sigma_max_slider, | |
sampler_type=sampler_type_dropdown,#"dpmpp-3m-sde", | |
device=device | |
) | |
print("Audio generated.") | |
# Rearrange audio batch to a single sequence | |
output = rearrange(output, "b d n -> d (b n)") | |
print("Audio rearranged.") | |
# Peak normalize, clip, convert to int16 | |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu() | |
max_length = sample_rate * seconds_total | |
if output.shape[1] > max_length: | |
output = output[:, :max_length] | |
print(f"Audio trimmed to {seconds_total} seconds.") | |
# Generate a unique filename for the output | |
random_uuid = uuid.uuid4().hex | |
unique_filename = f"/data/output_{random_uuid}.wav" | |
unique_textfile = f"/data/output_{random_uuid}.txt" | |
print(f"Saving audio to file: {unique_filename}") | |
# Save to file | |
torchaudio.save(unique_filename, output, sample_rate) | |
print(f"Audio saved: {unique_filename}") | |
with open(unique_textfile, "w") as file: | |
file.write(prompt) | |
# Return the path to the generated audio file | |
return unique_filename | |
def list_all_outputs(generation_history): | |
directory_path = FILE_DIR_PATH | |
files_in_directory = os.listdir(directory_path) | |
wav_files = [os.path.join(directory_path, file) for file in files_in_directory if file.endswith('.wav')] | |
wav_files.sort(key=lambda x: os.path.getmtime(os.path.join(directory_path, x)), reverse=True) | |
history_list = generation_history.split(',') if generation_history else [] | |
updated_files = [file for file in wav_files if file not in history_list] | |
updated_history = updated_files + history_list | |
return ','.join(updated_history), gr.update(visible=True) | |
def increase_list_size(list_size): | |
return list_size+PAGE_SIZE | |
css = ''' | |
#live_gen:before { | |
content: ''; | |
animation: svelte-z7cif2-pulseStart 1s cubic-bezier(.4,0,.6,1), svelte-z7cif2-pulse 2s cubic-bezier(.4,0,.6,1) 1s infinite; | |
border: 2px solid var(--color-accent); | |
background: transparent; | |
z-index: var(--layer-1); | |
pointer-events: none; | |
position: absolute; | |
height: 100%; | |
width: 100%; | |
border-radius: 7px; | |
} | |
#live_gen_items{ | |
max-height: 570px; | |
overflow-y: scroll; | |
} | |
''' | |
examples = [ | |
[ | |
"A serene soundscape of a quiet beach at sunset.", # Text prompt | |
"dpmpp-2m-sde", # Sampler type | |
45, # Duration in Seconds | |
100, # Number of Diffusion Steps | |
10, # CFG Scale | |
0.5, # Sigma min | |
800 # Sigma max | |
], | |
[ | |
"clapping crowd", # Text prompt | |
"dpmpp-3m-sde", # Sampler type | |
30, # Duration in Seconds | |
100, # Number of Diffusion Steps | |
7, # CFG Scale | |
0.5, # Sigma min | |
500 # Sigma max | |
], | |
[ | |
"A forest ambiance with birds chirping and wind rustling through the leaves.", # Text prompt | |
"k-dpm-fast", # Sampler type | |
60, # Duration in Seconds | |
140, # Number of Diffusion Steps | |
7.5, # CFG Scale | |
0.3, # Sigma min | |
700 # Sigma max | |
], | |
[ | |
"A gentle rainfall with distant thunder.", # Text prompt | |
"dpmpp-3m-sde", # Sampler type | |
35, # Duration in Seconds | |
110, # Number of Diffusion Steps | |
8, # CFG Scale | |
0.1, # Sigma min | |
500 # Sigma max | |
], | |
[ | |
"A jazz cafe environment with soft music and ambient chatter.", # Text prompt | |
"k-lms", # Sampler type | |
25, # Duration in Seconds | |
90, # Number of Diffusion Steps | |
6, # CFG Scale | |
0.4, # Sigma min | |
650 # Sigma max | |
], | |
["Rock beat played in a treated studio, session drumming on an acoustic kit.", | |
"dpmpp-2m-sde", # Sampler type | |
30, # Duration in Seconds | |
100, # Number of Diffusion Steps | |
7, # CFG Scale | |
0.3, # Sigma min | |
500 # Sigma max | |
] | |
] | |
with gr.Blocks(theme=theme, css=css) as demo: | |
gr.Markdown("# Stable Audio Multiplayer Live") | |
gr.Markdown("Generate audio with text, share and learn from others how to best prompt this new model") | |
generation_history = gr.Textbox(visible=False) | |
list_size = gr.Number(value=PAGE_SIZE, visible=False) | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here") | |
btn_run = gr.Button("Generate") | |
with gr.Accordion("Parameters", open=True): | |
with gr.Row(): | |
duration = gr.Slider(0, 47, value=20, step=1, label="Duration in Seconds") | |
with gr.Accordion("Advanced parameters", open=False): | |
steps = gr.Slider(10, 150, value=80, step=10, label="Number of Diffusion Steps") | |
sampler_type = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", | |
"k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], | |
label="Sampler type", value="dpmpp-3m-sde") | |
with gr.Row(): | |
cfg_scale = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale") | |
sigma_min = gr.Slider(0.0, 5.0, step=0.01, value=0.3, label="Sigma min") | |
sigma_max = gr.Slider(0.0, 1000.0, step=0.1, value=500, label="Sigma max") | |
with gr.Column() as output_list: | |
output = gr.Audio(type="filepath", label="Generated Audio") | |
with gr.Column(elem_id="live_gen") as community_list: | |
gr.Markdown("# Community generations") | |
with gr.Column(elem_id="live_gen_items"): | |
def show_output_list(generation_history, list_size): | |
history_list = generation_history.split(',') if generation_history else [] | |
history_list_latest = history_list[:list_size] | |
for generation in history_list_latest: | |
generation_prompt_file = generation.replace('.wav', '.txt') | |
with open(generation_prompt_file, 'r') as file: | |
generation_prompt = file.read() | |
with gr.Group(): | |
gr.Markdown(value=f"### {generation_prompt}") | |
gr.Audio(value=generation) | |
load_more = gr.Button("Load more") | |
load_more.click(fn=increase_list_size, inputs=list_size, outputs=list_size) | |
gr.Examples( | |
fn=generate_audio, | |
examples=examples, | |
inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max], | |
outputs=output, | |
cache_examples="lazy" | |
) | |
gr.on( | |
triggers=[btn_run.click, prompt.submit], | |
fn=generate_audio, | |
inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max], | |
outputs=output | |
) | |
demo.load(fn=list_all_outputs, inputs=generation_history, outputs=[generation_history, community_list], every=2) | |
model, model_config = load_model() | |
demo.launch() |