Fabrice-TIERCELIN's picture
Make the result different at each run
08c4a40 verified
raw
history blame
9.59 kB
import torch
import torchaudio
import random
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
PAGE_SIZE = 10
FILE_DIR_PATH = "/data"
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
# Load the model outside of the GPU-decorated function
def load_model():
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
print("Loading model...Done")
return model, model_config
# Function to set up, generate, and process the audio
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
def generate_audio(prompt, sampler_type_dropdown, seconds_total=30, steps=100, cfg_scale=7,sigma_min_slider=0.3,sigma_max_slider=500, progress=gr.Progress(track_tqdm=True)):
seed = random.randint(0, 2**63 - 1)
random.seed(seed)
torch.manual_seed(seed)
print(f"Prompt received: {prompt}")
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Fetch the Hugging Face token from the environment variable
hf_token = os.getenv('HF_TOKEN')
print(f"Hugging Face token: {hf_token}")
# Use pre-loaded model and configuration
model, model_config = load_model()
sample_rate = model_config["sample_rate"]
sample_size = model_config["sample_size"]
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
model = model.to(device)
print("Model moved to device.")
# Set up text and timing conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
print(f"Conditioning: {conditioning}")
# Generate stereo audio
print("Generating audio...")
output = generate_diffusion_cond(
model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=sigma_min_slider,
sigma_max=sigma_max_slider,
sampler_type=sampler_type_dropdown,#"dpmpp-3m-sde",
device=device
)
print("Audio generated.")
# Rearrange audio batch to a single sequence
output = rearrange(output, "b d n -> d (b n)")
print("Audio rearranged.")
# Peak normalize, clip, convert to int16
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
max_length = sample_rate * seconds_total
if output.shape[1] > max_length:
output = output[:, :max_length]
print(f"Audio trimmed to {seconds_total} seconds.")
# Generate a unique filename for the output
random_uuid = uuid.uuid4().hex
unique_filename = f"/data/output_{random_uuid}.wav"
unique_textfile = f"/data/output_{random_uuid}.txt"
print(f"Saving audio to file: {unique_filename}")
# Save to file
torchaudio.save(unique_filename, output, sample_rate)
print(f"Audio saved: {unique_filename}")
with open(unique_textfile, "w") as file:
file.write(prompt)
# Return the path to the generated audio file
return unique_filename
def list_all_outputs(generation_history):
directory_path = FILE_DIR_PATH
files_in_directory = os.listdir(directory_path)
wav_files = [os.path.join(directory_path, file) for file in files_in_directory if file.endswith('.wav')]
wav_files.sort(key=lambda x: os.path.getmtime(os.path.join(directory_path, x)), reverse=True)
history_list = generation_history.split(',') if generation_history else []
updated_files = [file for file in wav_files if file not in history_list]
updated_history = updated_files + history_list
return ','.join(updated_history), gr.update(visible=True)
def increase_list_size(list_size):
return list_size+PAGE_SIZE
css = '''
#live_gen:before {
content: '';
animation: svelte-z7cif2-pulseStart 1s cubic-bezier(.4,0,.6,1), svelte-z7cif2-pulse 2s cubic-bezier(.4,0,.6,1) 1s infinite;
border: 2px solid var(--color-accent);
background: transparent;
z-index: var(--layer-1);
pointer-events: none;
position: absolute;
height: 100%;
width: 100%;
border-radius: 7px;
}
#live_gen_items{
max-height: 570px;
overflow-y: scroll;
}
'''
examples = [
[
"A serene soundscape of a quiet beach at sunset.", # Text prompt
"dpmpp-2m-sde", # Sampler type
45, # Duration in Seconds
100, # Number of Diffusion Steps
10, # CFG Scale
0.5, # Sigma min
800 # Sigma max
],
[
"clapping crowd", # Text prompt
"dpmpp-3m-sde", # Sampler type
30, # Duration in Seconds
100, # Number of Diffusion Steps
7, # CFG Scale
0.5, # Sigma min
500 # Sigma max
],
[
"A forest ambiance with birds chirping and wind rustling through the leaves.", # Text prompt
"k-dpm-fast", # Sampler type
60, # Duration in Seconds
140, # Number of Diffusion Steps
7.5, # CFG Scale
0.3, # Sigma min
700 # Sigma max
],
[
"A gentle rainfall with distant thunder.", # Text prompt
"dpmpp-3m-sde", # Sampler type
35, # Duration in Seconds
110, # Number of Diffusion Steps
8, # CFG Scale
0.1, # Sigma min
500 # Sigma max
],
[
"A jazz cafe environment with soft music and ambient chatter.", # Text prompt
"k-lms", # Sampler type
25, # Duration in Seconds
90, # Number of Diffusion Steps
6, # CFG Scale
0.4, # Sigma min
650 # Sigma max
],
["Rock beat played in a treated studio, session drumming on an acoustic kit.",
"dpmpp-2m-sde", # Sampler type
30, # Duration in Seconds
100, # Number of Diffusion Steps
7, # CFG Scale
0.3, # Sigma min
500 # Sigma max
]
]
with gr.Blocks(theme=theme, css=css) as demo:
gr.Markdown("# Stable Audio Multiplayer Live")
gr.Markdown("Generate audio with text, share and learn from others how to best prompt this new model")
generation_history = gr.Textbox(visible=False)
list_size = gr.Number(value=PAGE_SIZE, visible=False)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
btn_run = gr.Button("Generate")
with gr.Accordion("Parameters", open=True):
with gr.Row():
duration = gr.Slider(0, 47, value=20, step=1, label="Duration in Seconds")
with gr.Accordion("Advanced parameters", open=False):
steps = gr.Slider(10, 150, value=80, step=10, label="Number of Diffusion Steps")
sampler_type = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms",
"k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"],
label="Sampler type", value="dpmpp-3m-sde")
with gr.Row():
cfg_scale = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
sigma_min = gr.Slider(0.0, 5.0, step=0.01, value=0.3, label="Sigma min")
sigma_max = gr.Slider(0.0, 1000.0, step=0.1, value=500, label="Sigma max")
with gr.Column() as output_list:
output = gr.Audio(type="filepath", label="Generated Audio")
with gr.Column(elem_id="live_gen") as community_list:
gr.Markdown("# Community generations")
with gr.Column(elem_id="live_gen_items"):
@gr.render(inputs=[generation_history, list_size])
def show_output_list(generation_history, list_size):
history_list = generation_history.split(',') if generation_history else []
history_list_latest = history_list[:list_size]
for generation in history_list_latest:
generation_prompt_file = generation.replace('.wav', '.txt')
with open(generation_prompt_file, 'r') as file:
generation_prompt = file.read()
with gr.Group():
gr.Markdown(value=f"### {generation_prompt}")
gr.Audio(value=generation)
load_more = gr.Button("Load more")
load_more.click(fn=increase_list_size, inputs=list_size, outputs=list_size)
gr.Examples(
fn=generate_audio,
examples=examples,
inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max],
outputs=output,
cache_examples="lazy"
)
gr.on(
triggers=[btn_run.click, prompt.submit],
fn=generate_audio,
inputs=[prompt, sampler_type, duration, steps, cfg_scale, sigma_min, sigma_max],
outputs=output
)
demo.load(fn=list_all_outputs, inputs=generation_history, outputs=[generation_history, community_list], every=2)
model, model_config = load_model()
demo.launch()