import streamlit as st
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
new_model = tf.keras.models.load_model("best_model.h5",custom_objects={"KerasLayer": hub.KerasLayer}, compile=False)
def welcome():
return "Welcome to my app"
def main():
st.title("Financial News Sentiment Analysis App")
st.write(
"This app will tell you if mention news is Fake or Real by using Natural Language Processing")
html_temp = """
Financial News Sentiment Analysis
"""
st.markdown(html_temp, unsafe_allow_html=True)
text = st.text_area("Enter your Financial News")
if st.button("Predict"):
pred_prob = new_model.predict([text])
predict = tf.squeeze(tf.round(pred_prob)).numpy()
st.subheader("AI thinks that ...")
if predict == 0:
col1, col2 = st.columns(2)
col1.metric("Prediction", value="It's a Negative News.")
col2.metric("Confidence Level", value=f"{np.round(np.max(pred_prob) * 100)}%")
else:
col1, col2 = st.columns(2)
col1.metric("Prediction", value="It's a Positive News.")
col2.metric("Confidence Level", value=f"{np.round(np.max(pred_prob) * 100)}%")
if st.button("About"):
st.text("Built with Streamlit")
if __name__ == '__main__':
main()