import streamlit as st import tensorflow as tf import tensorflow_hub as hub import numpy as np new_model = tf.keras.models.load_model("best_model.h5",custom_objects={"KerasLayer": hub.KerasLayer}, compile=False) def welcome(): return "Welcome to my app" def main(): st.title("Financial News Sentiment Analysis App") st.write( "This app will tell you if mention news is Fake or Real by using Natural Language Processing") html_temp = """

Financial News Sentiment Analysis

""" st.markdown(html_temp, unsafe_allow_html=True) text = st.text_area("Enter your Financial News") if st.button("Predict"): pred_prob = new_model.predict([text]) predict = tf.squeeze(tf.round(pred_prob)).numpy() st.subheader("AI thinks that ...") if predict == 0: col1, col2 = st.columns(2) col1.metric("Prediction", value="It's a Negative News.") col2.metric("Confidence Level", value=f"{np.round(np.max(pred_prob) * 100)}%") else: col1, col2 = st.columns(2) col1.metric("Prediction", value="It's a Positive News.") col2.metric("Confidence Level", value=f"{np.round(np.max(pred_prob) * 100)}%") if st.button("About"): st.text("Built with Streamlit") if __name__ == '__main__': main()