amirkhanbloch's picture
Update app.py
a7a57cb verified
import os
from io import BytesIO
import gradio as gr
import google.generativeai as genai
from PIL import Image
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
input_prompt="""
"You are an expert in computer vision and agriculture who can easily predict the disease of the plant. "
"Analyze the following image and provide 7 short outputs in a structured format: "
"1. Crop : , "
"2. Infected or Healthy : , "
"3. Type of disease (if any), "
"4. How confident out of 100% whether image is healthy or infected "
"5. Reason for the disease such as whether it is happening due to fungus, bacteria, insect bite, poor nutrition, etc., "
"6. Plant Growth Stage. "
"7. Pest Life Stage."
"""
# Function to get a response from the Google Gemini Vision API
def get_gemini_response(image):
model = genai.GenerativeModel('gemini-1.5-pro')
# Convert PIL image to bytes
bytes_io = BytesIO()
image.save(bytes_io, format='PNG')
bytes_data = bytes_io.getvalue()
response=model.generate_content([input_prompt,image])
# Placeholder logic for now: replace with actual API usage
# You would pass the image bytes data to the API
# Currently this is a mock response
crop_name = "Wheat" # Example: Replace this with the actual API result
disease_type = "Wheat Septoria" # Example: Replace this with the actual API result
# Return disease info
#return get_disease_info(crop_name, disease_type)
return response.text
# Function to handle the uploaded image and predict crop health
def predict_crop_health(uploaded_image):
# Pass the image to the Gemini API to get prediction
return get_gemini_response(uploaded_image)
# Define the Gradio interface: Inputs and Outputs
inputs = gr.Image(type="pil", label="Upload Crop Image")
outputs = gr.Markdown(label="Prediction Results")
# Launch the Gradio interface
gr.Interface(
fn=predict_crop_health,
inputs=inputs,
outputs=gr.Textbox(label="Crop Disease Predictor"),
title="Crop Disease Prediction App",
description="Upload an image of a crop to predict its disease and get treatment suggestions.",
live=False
).launch()