Text-to-Audio / app.py
Hecheng0625's picture
Update app.py
53da582 verified
import os
import time
import numpy as np
import torch
from tqdm import tqdm
import torch.nn as nn
from collections import OrderedDict
import json
from models.tta.autoencoder.autoencoder import AutoencoderKL
from models.tta.ldm.inference_utils.vocoder import Generator
from models.tta.ldm.audioldm import AudioLDM
from transformers import T5EncoderModel, AutoTokenizer
from diffusers import PNDMScheduler
import matplotlib.pyplot as plt
from scipy.io.wavfile import write
from utils.util import load_config
import gradio as gr
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def build_autoencoderkl(cfg, device):
autoencoderkl = AutoencoderKL(cfg.model.autoencoderkl)
autoencoder_path = cfg.model.autoencoder_path
checkpoint = torch.load(autoencoder_path, map_location="cpu")
autoencoderkl.load_state_dict(checkpoint["model"])
autoencoderkl = autoencoderkl.to(device=device)
autoencoderkl.requires_grad_(requires_grad=False)
autoencoderkl.eval()
return autoencoderkl
def build_textencoder(device):
try:
tokenizer = AutoTokenizer.from_pretrained("t5-base", model_max_length=512)
text_encoder = T5EncoderModel.from_pretrained("t5-base")
except:
tokenizer = AutoTokenizer.from_pretrained("ckpts/tta/tokenizer")
text_encoder = T5EncoderModel.from_pretrained("ckpts/tta/text_encoder")
text_encoder = text_encoder.to(device=device)
text_encoder.requires_grad_(requires_grad=False)
text_encoder.eval()
return tokenizer, text_encoder
def build_vocoder(device):
config_file = os.path.join("ckpts/tta/hifigan_checkpoints/config.json")
with open(config_file) as f:
data = f.read()
json_config = json.loads(data)
h = AttrDict(json_config)
vocoder = Generator(h).to(device)
checkpoint_dict = torch.load(
"ckpts/tta/hifigan_checkpoints/g_01250000", map_location=device
)
vocoder.load_state_dict(checkpoint_dict["generator"])
return vocoder
def build_model(cfg):
model = AudioLDM(cfg.model.audioldm)
return model
def get_text_embedding(text, tokenizer, text_encoder, device):
prompt = [text]
text_input = tokenizer(
prompt,
max_length=tokenizer.model_max_length,
truncation=True,
padding="do_not_pad",
return_tensors="pt",
)
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[""] * 1, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def tta_inference(
text,
guidance_scale=4,
diffusion_steps=100,
):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.environ["WORK_DIR"] = "./"
cfg = load_config("egs/tta/audioldm/exp_config.json")
autoencoderkl = build_autoencoderkl(cfg, device)
tokenizer, text_encoder = build_textencoder(device)
vocoder = build_vocoder(device)
model = build_model(cfg)
checkpoint_path = "ckpts/tta/audioldm_debug_latent_size_4_5_39/checkpoints/step-0570000_loss-0.2521.pt"
checkpoint = torch.load(checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint["model"])
model = model.to(device)
text_embeddings = get_text_embedding(text, tokenizer, text_encoder, device)
num_steps = diffusion_steps
noise_scheduler = PNDMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
skip_prk_steps=True,
set_alpha_to_one=False,
steps_offset=1,
prediction_type="epsilon",
)
noise_scheduler.set_timesteps(num_steps)
latents = torch.randn(
(
1,
cfg.model.autoencoderkl.z_channels,
80 // (2 ** (len(cfg.model.autoencoderkl.ch_mult) - 1)),
624 // (2 ** (len(cfg.model.autoencoderkl.ch_mult) - 1)),
)
).to(device)
model.eval()
for t in tqdm(noise_scheduler.timesteps):
t = t.to(device)
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
latent_model_input = noise_scheduler.scale_model_input(
latent_model_input, timestep=t
)
# print(latent_model_input.shape)
# predict the noise residual
with torch.no_grad():
noise_pred = model(
latent_model_input, torch.cat([t.unsqueeze(0)] * 2), text_embeddings
)
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
print(guidance_scale)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
# print(latents.shape)
latents_out = latents
with torch.no_grad():
mel_out = autoencoderkl.decode(latents_out)
melspec = mel_out[0, 0].cpu().detach().numpy()
vocoder.eval()
vocoder.remove_weight_norm()
with torch.no_grad():
melspec = np.expand_dims(melspec, 0)
melspec = torch.FloatTensor(melspec).to(device)
y = vocoder(melspec)
audio = y.squeeze()
audio = audio * 32768.0
audio = audio.cpu().numpy().astype("int16")
os.makedirs("result", exist_ok=True)
write(os.path.join("result", text + ".wav"), 16000, audio)
return os.path.join("result", text + ".wav")
demo_inputs = [
gr.Textbox(
value="birds singing and a man whistling",
label="Text prompt you want to generate",
type="text",
),
gr.Slider(
1,
10,
value=4,
step=1,
label="Classifier free guidance",
),
gr.Slider(
50,
1000,
value=100,
step=1,
label="Diffusion Inference Steps",
info="As the step number increases, the synthesis quality will be better while the inference speed will be lower",
),
]
demo_outputs = gr.Audio(label="")
demo = gr.Interface(
fn=tta_inference,
inputs=demo_inputs,
outputs=demo_outputs,
title="Amphion Text to Audio",
)
if __name__ == "__main__":
demo.launch()