Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,666 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import random
import torch
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from tqdm import tqdm
from g2p_en import G2p
import librosa
from torch.utils.data import Dataset
import pandas as pd
import time
import io
SAMPLE_RATE = 16000
# g2p
from .g2p_processor import G2pProcessor
phonemizer_g2p = G2pProcessor()
class VALLEDataset(Dataset):
def __init__(self, args):
print(f"Initializing VALLEDataset")
self.dataset_list = args.dataset_list
print(f"using sampling rate {SAMPLE_RATE}")
# set dataframe clumn name
book_col_name = [
"ID",
"Original_text",
"Normalized_text",
"Aligned_or_not",
"Start_time",
"End_time",
"Signal_to_noise_ratio",
]
trans_col_name = [
"ID",
"Original_text",
"Normalized_text",
"Dir_path",
"Duration",
]
self.metadata_cache = pd.DataFrame(columns=book_col_name)
self.trans_cache = pd.DataFrame(columns=trans_col_name)
# dataset_cache_dir = args.cache_dir # cache_dir
# print(f"args.cache_dir = ", args.cache_dir)
# os.makedirs(dataset_cache_dir, exist_ok=True)
######## add data dir to dataset2dir ##########
self.dataset2dir = {
"dev-clean": f"{args.data_dir}/dev-clean",
"dev-other": f"{args.data_dir}/dev-other",
"test-clean": f"{args.data_dir}/test-clean",
"test-other": f"{args.data_dir}/test-other",
"train-clean-100": f"{args.data_dir}/train-clean-100",
"train-clean-360": f"{args.data_dir}/train-clean-360",
"train-other-500": f"{args.data_dir}/train-other-500",
}
###### load metadata and transcripts #####
for dataset_name in self.dataset_list:
print("Initializing dataset: ", dataset_name)
# get [book,transcripts,audio] files list
self.book_files_list = self.get_metadata_files(
self.dataset2dir[dataset_name]
)
self.trans_files_list = self.get_trans_files(self.dataset2dir[dataset_name])
## create metadata_cache (book.tsv file is not filtered, some file is not exist, but contain Duration and Signal_to_noise_ratio)
print("reading paths for dataset...")
for book_path in tqdm(self.book_files_list):
tmp_cache = pd.read_csv(
book_path, sep="\t", names=book_col_name, quoting=3
)
self.metadata_cache = pd.concat(
[self.metadata_cache, tmp_cache], ignore_index=True
)
self.metadata_cache.set_index("ID", inplace=True)
## create transcripts (the trans.tsv file)
print("creating transcripts for dataset...")
for trans_path in tqdm(self.trans_files_list):
tmp_cache = pd.read_csv(
trans_path, sep="\t", names=trans_col_name, quoting=3
)
tmp_cache["Dir_path"] = os.path.dirname(trans_path)
self.trans_cache = pd.concat(
[self.trans_cache, tmp_cache], ignore_index=True
)
self.trans_cache.set_index("ID", inplace=True)
## calc duration
self.trans_cache["Duration"] = (
self.metadata_cache.End_time[self.trans_cache.index]
- self.metadata_cache.Start_time[self.trans_cache.index]
)
## add fullpath
# self.trans_cache['Full_path'] = os.path.join(self.dataset2dir[dataset_name],self.trans_cache['ID'])
# filter_by_duration: filter_out files with duration < 3.0 or > 15.0
print(f"Filtering files with duration between 3.0 and 15.0 seconds")
print(f"Before filtering: {len(self.trans_cache)}")
self.trans_cache = self.trans_cache[
(self.trans_cache["Duration"] >= 3.0)
& (self.trans_cache["Duration"] <= 15.0)
]
print(f"After filtering: {len(self.trans_cache)}")
def get_metadata_files(self, directory):
book_files = []
for root, _, files in os.walk(directory):
for file in files:
if file.endswith(".book.tsv") and file[0] != ".":
rel_path = os.path.join(root, file)
book_files.append(rel_path)
return book_files
def get_trans_files(self, directory):
trans_files = []
for root, _, files in os.walk(directory):
for file in files:
if file.endswith(".trans.tsv") and file[0] != ".":
rel_path = os.path.join(root, file)
trans_files.append(rel_path)
return trans_files
def get_audio_files(self, directory):
audio_files = []
for root, _, files in os.walk(directory):
for file in files:
if file.endswith((".flac", ".wav", ".opus")):
rel_path = os.path.relpath(os.path.join(root, file), directory)
audio_files.append(rel_path)
return audio_files
def get_num_frames(self, index):
# get_num_frames(durations) by index
duration = self.meta_data_cache["Duration"][index]
# num_frames = duration * SAMPLE_RATE
num_frames = int(duration * 75)
# file_rel_path = self.meta_data_cache['relpath'][index]
# uid = file_rel_path.rstrip('.flac').split('/')[-1]
# num_frames += len(self.transcripts[uid])
return num_frames
def __len__(self):
return len(self.trans_cache)
def __getitem__(self, idx):
# Get the file rel path
file_dir_path = self.trans_cache["Dir_path"].iloc[idx]
# Get uid
uid = self.trans_cache.index[idx]
# Get the file name from cache uid
file_name = uid + ".wav"
# Get the full file path
full_file_path = os.path.join(file_dir_path, file_name)
# get phone
phone = self.trans_cache["Normalized_text"][uid]
phone = phonemizer_g2p(phone, "en")[1]
# load speech
speech, _ = librosa.load(full_file_path, sr=SAMPLE_RATE)
# if self.resample_to_24k:
# speech = librosa.resample(speech, orig_sr=SAMPLE_RATE, target_sr=24000)
# speech = torch.tensor(speech, dtype=torch.float32)
# pad speech to multiples of 200
# remainder = speech.size(0) % 200
# if remainder > 0:
# pad = 200 - remainder
# speech = torch.cat([speech, torch.zeros(pad, dtype=torch.float32)], dim=0)
# inputs = self._get_reference_vc(speech, hop_length=200)
inputs = {}
# Get the speaker id
# speaker = self.meta_data_cache['speaker'][idx]
# speaker_id = self.speaker2id[speaker]
# inputs["speaker_id"] = speaker_id
inputs["speech"] = speech # 24khz speech, [T]
inputs["phone"] = phone # [T]
return inputs
def _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
if len(batch) == 0:
return 0
if len(batch) == max_sentences:
return 1
if num_tokens > max_tokens:
return 1
return 0
def batch_by_size(
indices,
num_tokens_fn,
max_tokens=None,
max_sentences=None,
required_batch_size_multiple=1,
):
"""
Yield mini-batches of indices bucketed by size. Batches may contain
sequences of different lengths.
Args:
indices (List[int]): ordered list of dataset indices
num_tokens_fn (callable): function that returns the number of tokens at
a given index
max_tokens (int, optional): max number of tokens in each batch
(default: None).
max_sentences (int, optional): max number of sentences in each
batch (default: None).
required_batch_size_multiple (int, optional): require batch size to
be a multiple of N (default: 1).
"""
bsz_mult = required_batch_size_multiple
sample_len = 0
sample_lens = []
batch = []
batches = []
for i in range(len(indices)):
idx = indices[i]
num_tokens = num_tokens_fn(idx)
sample_lens.append(num_tokens)
sample_len = max(sample_len, num_tokens)
assert (
sample_len <= max_tokens
), "sentence at index {} of size {} exceeds max_tokens " "limit of {}!".format(
idx, sample_len, max_tokens
)
num_tokens = (len(batch) + 1) * sample_len
if _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
mod_len = max(
bsz_mult * (len(batch) // bsz_mult),
len(batch) % bsz_mult,
)
batches.append(batch[:mod_len])
batch = batch[mod_len:]
sample_lens = sample_lens[mod_len:]
sample_len = max(sample_lens) if len(sample_lens) > 0 else 0
batch.append(idx)
if len(batch) > 0:
batches.append(batch)
return batches
def test():
from utils.util import load_config
cfg = load_config("./egs/tts/VALLE_V2/exp_ar_libritts.json")
dataset = VALLEDataset(cfg.dataset)
metadata_cache = dataset.metadata_cache
trans_cache = dataset.trans_cache
print(trans_cache.head(10))
# print(dataset.book_files_list)
breakpoint()
if __name__ == "__main__":
test()
|