File size: 9,666 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import random
import torch
from torch.nn.utils.rnn import pad_sequence
from utils.data_utils import *
from tqdm import tqdm
from g2p_en import G2p
import librosa
from torch.utils.data import Dataset
import pandas as pd
import time
import io

SAMPLE_RATE = 16000
# g2p
from .g2p_processor import G2pProcessor

phonemizer_g2p = G2pProcessor()


class VALLEDataset(Dataset):
    def __init__(self, args):
        print(f"Initializing VALLEDataset")
        self.dataset_list = args.dataset_list

        print(f"using sampling rate {SAMPLE_RATE}")

        # set dataframe clumn name
        book_col_name = [
            "ID",
            "Original_text",
            "Normalized_text",
            "Aligned_or_not",
            "Start_time",
            "End_time",
            "Signal_to_noise_ratio",
        ]
        trans_col_name = [
            "ID",
            "Original_text",
            "Normalized_text",
            "Dir_path",
            "Duration",
        ]
        self.metadata_cache = pd.DataFrame(columns=book_col_name)
        self.trans_cache = pd.DataFrame(columns=trans_col_name)
        # dataset_cache_dir = args.cache_dir # cache_dir
        # print(f"args.cache_dir = ", args.cache_dir)
        # os.makedirs(dataset_cache_dir, exist_ok=True)

        ######## add data dir to dataset2dir ##########
        self.dataset2dir = {
            "dev-clean": f"{args.data_dir}/dev-clean",
            "dev-other": f"{args.data_dir}/dev-other",
            "test-clean": f"{args.data_dir}/test-clean",
            "test-other": f"{args.data_dir}/test-other",
            "train-clean-100": f"{args.data_dir}/train-clean-100",
            "train-clean-360": f"{args.data_dir}/train-clean-360",
            "train-other-500": f"{args.data_dir}/train-other-500",
        }

        ###### load metadata and transcripts #####
        for dataset_name in self.dataset_list:
            print("Initializing dataset: ", dataset_name)
            # get [book,transcripts,audio] files list
            self.book_files_list = self.get_metadata_files(
                self.dataset2dir[dataset_name]
            )
            self.trans_files_list = self.get_trans_files(self.dataset2dir[dataset_name])

            ## create metadata_cache (book.tsv file is not filtered, some file is not exist, but contain Duration and Signal_to_noise_ratio)
            print("reading paths for dataset...")
            for book_path in tqdm(self.book_files_list):
                tmp_cache = pd.read_csv(
                    book_path, sep="\t", names=book_col_name, quoting=3
                )
                self.metadata_cache = pd.concat(
                    [self.metadata_cache, tmp_cache], ignore_index=True
                )
            self.metadata_cache.set_index("ID", inplace=True)

            ## create transcripts (the trans.tsv file)
            print("creating transcripts for dataset...")
            for trans_path in tqdm(self.trans_files_list):
                tmp_cache = pd.read_csv(
                    trans_path, sep="\t", names=trans_col_name, quoting=3
                )
                tmp_cache["Dir_path"] = os.path.dirname(trans_path)
                self.trans_cache = pd.concat(
                    [self.trans_cache, tmp_cache], ignore_index=True
                )
            self.trans_cache.set_index("ID", inplace=True)

            ## calc duration
            self.trans_cache["Duration"] = (
                self.metadata_cache.End_time[self.trans_cache.index]
                - self.metadata_cache.Start_time[self.trans_cache.index]
            )
            ## add fullpath
            # self.trans_cache['Full_path'] = os.path.join(self.dataset2dir[dataset_name],self.trans_cache['ID'])

        # filter_by_duration: filter_out files with duration < 3.0 or > 15.0
        print(f"Filtering files with duration between 3.0 and 15.0 seconds")
        print(f"Before filtering: {len(self.trans_cache)}")
        self.trans_cache = self.trans_cache[
            (self.trans_cache["Duration"] >= 3.0)
            & (self.trans_cache["Duration"] <= 15.0)
        ]
        print(f"After filtering: {len(self.trans_cache)}")

    def get_metadata_files(self, directory):
        book_files = []
        for root, _, files in os.walk(directory):
            for file in files:
                if file.endswith(".book.tsv") and file[0] != ".":
                    rel_path = os.path.join(root, file)
                    book_files.append(rel_path)
        return book_files

    def get_trans_files(self, directory):
        trans_files = []
        for root, _, files in os.walk(directory):
            for file in files:
                if file.endswith(".trans.tsv") and file[0] != ".":
                    rel_path = os.path.join(root, file)
                    trans_files.append(rel_path)
        return trans_files

    def get_audio_files(self, directory):
        audio_files = []
        for root, _, files in os.walk(directory):
            for file in files:
                if file.endswith((".flac", ".wav", ".opus")):
                    rel_path = os.path.relpath(os.path.join(root, file), directory)
                    audio_files.append(rel_path)
        return audio_files

    def get_num_frames(self, index):
        # get_num_frames(durations) by index
        duration = self.meta_data_cache["Duration"][index]
        # num_frames = duration * SAMPLE_RATE
        num_frames = int(duration * 75)

        # file_rel_path = self.meta_data_cache['relpath'][index]
        # uid = file_rel_path.rstrip('.flac').split('/')[-1]
        # num_frames += len(self.transcripts[uid])
        return num_frames

    def __len__(self):
        return len(self.trans_cache)

    def __getitem__(self, idx):
        # Get the file rel path
        file_dir_path = self.trans_cache["Dir_path"].iloc[idx]
        # Get uid
        uid = self.trans_cache.index[idx]
        # Get the file name from cache uid
        file_name = uid + ".wav"
        # Get the full file path
        full_file_path = os.path.join(file_dir_path, file_name)

        # get phone
        phone = self.trans_cache["Normalized_text"][uid]
        phone = phonemizer_g2p(phone, "en")[1]
        # load speech
        speech, _ = librosa.load(full_file_path, sr=SAMPLE_RATE)
        # if self.resample_to_24k:
        #     speech = librosa.resample(speech, orig_sr=SAMPLE_RATE, target_sr=24000)
        # speech = torch.tensor(speech, dtype=torch.float32)
        # pad speech to multiples of 200

        # remainder = speech.size(0) % 200
        # if remainder > 0:
        #     pad = 200 - remainder
        #     speech = torch.cat([speech, torch.zeros(pad, dtype=torch.float32)], dim=0)

        # inputs = self._get_reference_vc(speech, hop_length=200)
        inputs = {}
        # Get the speaker id
        # speaker = self.meta_data_cache['speaker'][idx]
        # speaker_id = self.speaker2id[speaker]
        # inputs["speaker_id"] = speaker_id
        inputs["speech"] = speech  # 24khz speech, [T]
        inputs["phone"] = phone  # [T]
        return inputs


def _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
    if len(batch) == 0:
        return 0
    if len(batch) == max_sentences:
        return 1
    if num_tokens > max_tokens:
        return 1
    return 0


def batch_by_size(
    indices,
    num_tokens_fn,
    max_tokens=None,
    max_sentences=None,
    required_batch_size_multiple=1,
):
    """
    Yield mini-batches of indices bucketed by size. Batches may contain
    sequences of different lengths.

    Args:
        indices (List[int]): ordered list of dataset indices
        num_tokens_fn (callable): function that returns the number of tokens at
            a given index
        max_tokens (int, optional): max number of tokens in each batch
            (default: None).
        max_sentences (int, optional): max number of sentences in each
            batch (default: None).
        required_batch_size_multiple (int, optional): require batch size to
            be a multiple of N (default: 1).
    """
    bsz_mult = required_batch_size_multiple

    sample_len = 0
    sample_lens = []
    batch = []
    batches = []
    for i in range(len(indices)):
        idx = indices[i]
        num_tokens = num_tokens_fn(idx)
        sample_lens.append(num_tokens)
        sample_len = max(sample_len, num_tokens)

        assert (
            sample_len <= max_tokens
        ), "sentence at index {} of size {} exceeds max_tokens " "limit of {}!".format(
            idx, sample_len, max_tokens
        )
        num_tokens = (len(batch) + 1) * sample_len

        if _is_batch_full(batch, num_tokens, max_tokens, max_sentences):
            mod_len = max(
                bsz_mult * (len(batch) // bsz_mult),
                len(batch) % bsz_mult,
            )
            batches.append(batch[:mod_len])
            batch = batch[mod_len:]
            sample_lens = sample_lens[mod_len:]
            sample_len = max(sample_lens) if len(sample_lens) > 0 else 0
        batch.append(idx)
    if len(batch) > 0:
        batches.append(batch)
    return batches


def test():
    from utils.util import load_config

    cfg = load_config("./egs/tts/VALLE_V2/exp_ar_libritts.json")
    dataset = VALLEDataset(cfg.dataset)
    metadata_cache = dataset.metadata_cache
    trans_cache = dataset.trans_cache
    print(trans_cache.head(10))
    # print(dataset.book_files_list)
    breakpoint()


if __name__ == "__main__":
    test()