File size: 5,119 Bytes
8c92a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

######## Build Experiment Environment ###########
exp_dir=$(cd `dirname $0`; pwd)
work_dir=$(dirname $(dirname $(dirname $(dirname $exp_dir))))

export WORK_DIR=$work_dir
export PYTHONPATH=$work_dir
export PYTHONIOENCODING=UTF-8

######## Parse the Given Parameters from the Commond ###########
options=$(getopt -o c:n:s --long gpu:,config:,name:,stage:,checkpoint:,resume_type:,main_process_port:,infer_mode:,infer_datasets:,infer_feature_dir:,infer_audio_dir:,infer_expt_dir:,infer_output_dir: -- "$@")
eval set -- "$options"

while true; do
  case $1 in
    # Experimental Configuration File
    -c | --config) shift; exp_config=$1 ; shift ;;
    # Experimental Name
    -n | --name) shift; exp_name=$1 ; shift ;;
    # Running Stage
    -s | --stage) shift; running_stage=$1 ; shift ;;
    # Visible GPU machines. The default value is "0".
    --gpu) shift; gpu=$1 ; shift ;;

    # [Only for Training] The specific checkpoint path that you want to resume from.
    --checkpoint) shift; checkpoint=$1 ; shift ;;
    # [Only for Training] `resume` for loading all the things (including model weights, optimizer, scheduler, and random states). `finetune` for loading only the model weights.
    --resume_type) shift; resume_type=$1 ; shift ;;
    # [Only for Traiing] `main_process_port` for multi gpu training
    --main_process_port) shift; main_process_port=$1 ; shift ;;

    # [Only for Inference] The inference mode
    --infer_mode) shift; infer_mode=$1 ; shift ;;
    # [Only for Inference] The inferenced datasets
    --infer_datasets) shift; infer_datasets=$1 ; shift ;;
    # [Only for Inference] The feature dir for inference
    --infer_feature_dir) shift; infer_feature_dir=$1 ; shift ;;
    # [Only for Inference] The audio dir for inference
    --infer_audio_dir) shift; infer_audio_dir=$1 ; shift ;;
    # [Only for Inference] The experiment dir. The value is like "[Your path to save logs and checkpoints]/[YourExptName]"
    --infer_expt_dir) shift; infer_expt_dir=$1 ; shift ;;
    # [Only for Inference] The output dir to save inferred audios. Its default value is "$expt_dir/result"
    --infer_output_dir) shift; infer_output_dir=$1 ; shift ;;

    --) shift ; break ;;
    *) echo "Invalid option: $1" exit 1 ;;
  esac
done


### Value check ###
if [ -z "$running_stage" ]; then
    echo "[Error] Please specify the running stage"
    exit 1
fi

if [ -z "$exp_config" ]; then
    exp_config="${exp_dir}"/exp_config.json
fi
echo "Exprimental Configuration File: $exp_config"

if [ -z "$gpu" ]; then
    gpu="0"
fi

if [ -z "$main_process_port" ]; then
    main_process_port=29500
fi
echo "Main Process Port: $main_process_port"

######## Features Extraction ###########
if [ $running_stage -eq 1 ]; then
    CUDA_VISIBLE_DEVICES=$gpu python "${work_dir}"/bins/vocoder/preprocess.py \
        --config $exp_config \
        --num_workers 8
fi

######## Training ###########
if [ $running_stage -eq 2 ]; then
    if [ -z "$exp_name" ]; then
        echo "[Error] Please specify the experiments name"
        exit 1
    fi
    echo "Exprimental Name: $exp_name"

    CUDA_VISIBLE_DEVICES=$gpu accelerate launch \
        --main_process_port "$main_process_port" \
        "${work_dir}"/bins/vocoder/train.py \
        --config "$exp_config" \
        --exp_name "$exp_name" \
        --log_level info \
        --checkpoint "$checkpoint" \
        --resume_type "$resume_type"
fi

######## Inference/Conversion ###########
if [ $running_stage -eq 3 ]; then
    if [ -z "$infer_expt_dir" ]; then
        echo "[Error] Please specify the experimental directionary. The value is like [Your path to save logs and checkpoints]/[YourExptName]"
        exit 1
    fi

    if [ -z "$infer_output_dir" ]; then
        infer_output_dir="$infer_expt_dir/result"
    fi

    if [ $infer_mode = "infer_from_dataset" ]; then
        CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
            --config $exp_config \
            --infer_mode $infer_mode \
            --infer_datasets $infer_datasets \
            --vocoder_dir $infer_expt_dir \
            --output_dir $infer_output_dir  \
            --log_level debug
    fi

    if [ $infer_mode = "infer_from_feature" ]; then
        CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
            --config $exp_config \
            --infer_mode $infer_mode \
            --feature_folder $infer_feature_dir \
            --vocoder_dir $infer_expt_dir \
            --output_dir $infer_output_dir  \
            --log_level debug
    fi

    if [ $infer_mode = "infer_from_audio" ]; then
        CUDA_VISIBLE_DEVICES=$gpu accelerate launch "$work_dir"/bins/vocoder/inference.py \
            --config $exp_config \
            --infer_mode $infer_mode \
            --audio_folder $infer_audio_dir \
            --vocoder_dir $infer_expt_dir \
            --output_dir $infer_output_dir  \
            --log_level debug
    fi

fi