File size: 5,692 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from typing import List, Tuple

import torch
from modules.wenet_extractor.utils.common import log_add


class Sequence:
    __slots__ = {"hyp", "score", "cache"}

    def __init__(
        self,
        hyp: List[torch.Tensor],
        score,
        cache: List[torch.Tensor],
    ):
        self.hyp = hyp
        self.score = score
        self.cache = cache


class PrefixBeamSearch:
    def __init__(self, encoder, predictor, joint, ctc, blank):
        self.encoder = encoder
        self.predictor = predictor
        self.joint = joint
        self.ctc = ctc
        self.blank = blank

    def forward_decoder_one_step(
        self, encoder_x: torch.Tensor, pre_t: torch.Tensor, cache: List[torch.Tensor]
    ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        padding = torch.zeros(pre_t.size(0), 1, device=encoder_x.device)
        pre_t, new_cache = self.predictor.forward_step(
            pre_t.unsqueeze(-1), padding, cache
        )
        x = self.joint(encoder_x, pre_t)  # [beam, 1, 1, vocab]
        x = x.log_softmax(dim=-1)
        return x, new_cache

    def prefix_beam_search(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        decoding_chunk_size: int = -1,
        beam_size: int = 5,
        num_decoding_left_chunks: int = -1,
        simulate_streaming: bool = False,
        ctc_weight: float = 0.3,
        transducer_weight: float = 0.7,
    ):
        """prefix beam search
        also see wenet.transducer.transducer.beam_search
        """
        assert speech.shape[0] == speech_lengths.shape[0]
        assert decoding_chunk_size != 0
        device = speech.device
        batch_size = speech.shape[0]
        assert batch_size == 1

        # 1. Encoder
        encoder_out, _ = self.encoder(
            speech, speech_lengths, decoding_chunk_size, num_decoding_left_chunks
        )  # (B, maxlen, encoder_dim)
        maxlen = encoder_out.size(1)

        ctc_probs = self.ctc.log_softmax(encoder_out).squeeze(0)
        beam_init: List[Sequence] = []

        # 2. init beam using Sequence to save beam unit
        cache = self.predictor.init_state(1, method="zero", device=device)
        beam_init.append(Sequence(hyp=[self.blank], score=0.0, cache=cache))
        # 3. start decoding (notice: we use breathwise first searching)
        # !!!! In this decoding method: one frame do not output multi units. !!!!
        # !!!!    Experiments show that this strategy has little impact      !!!!
        for i in range(maxlen):
            # 3.1 building input
            # decoder taking the last token to predict the next token
            input_hyp = [s.hyp[-1] for s in beam_init]
            input_hyp_tensor = torch.tensor(input_hyp, dtype=torch.int, device=device)
            # building statement from beam
            cache_batch = self.predictor.cache_to_batch([s.cache for s in beam_init])
            # build score tensor to do torch.add() function
            scores = torch.tensor([s.score for s in beam_init]).to(device)

            # 3.2 forward decoder
            logp, new_cache = self.forward_decoder_one_step(
                encoder_out[:, i, :].unsqueeze(1),
                input_hyp_tensor,
                cache_batch,
            )  # logp: (N, 1, 1, vocab_size)
            logp = logp.squeeze(1).squeeze(1)  # logp: (N, vocab_size)
            new_cache = self.predictor.batch_to_cache(new_cache)

            # 3.3 shallow fusion for transducer score
            #     and ctc score where we can also add the LM score
            logp = torch.log(
                torch.add(
                    transducer_weight * torch.exp(logp),
                    ctc_weight * torch.exp(ctc_probs[i].unsqueeze(0)),
                )
            )

            # 3.4 first beam prune
            top_k_logp, top_k_index = logp.topk(beam_size)  # (N, N)
            scores = torch.add(scores.unsqueeze(1), top_k_logp)

            # 3.5 generate new beam (N*N)
            beam_A = []
            for j in range(len(beam_init)):
                # update seq
                base_seq = beam_init[j]
                for t in range(beam_size):
                    # blank: only update the score
                    if top_k_index[j, t] == self.blank:
                        new_seq = Sequence(
                            hyp=base_seq.hyp.copy(),
                            score=scores[j, t].item(),
                            cache=base_seq.cache,
                        )

                        beam_A.append(new_seq)
                    # other unit: update hyp score statement and last
                    else:
                        hyp_new = base_seq.hyp.copy()
                        hyp_new.append(top_k_index[j, t].item())
                        new_seq = Sequence(
                            hyp=hyp_new, score=scores[j, t].item(), cache=new_cache[j]
                        )
                        beam_A.append(new_seq)

            # 3.6 prefix fusion
            fusion_A = [beam_A[0]]
            for j in range(1, len(beam_A)):
                s1 = beam_A[j]
                if_do_append = True
                for t in range(len(fusion_A)):
                    # notice: A_ can not fusion with A
                    if s1.hyp == fusion_A[t].hyp:
                        fusion_A[t].score = log_add([fusion_A[t].score, s1.score])
                        if_do_append = False
                        break
                if if_do_append:
                    fusion_A.append(s1)

            # 4. second pruned
            fusion_A.sort(key=lambda x: x.score, reverse=True)
            beam_init = fusion_A[:beam_size]

        return beam_init, encoder_out