File size: 17,672 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
from typing import Dict, List, Optional, Tuple, Union

import torch
import torchaudio
from torch import nn
from torch.nn.utils.rnn import pad_sequence

from modules.wenet_extractor.transducer.predictor import PredictorBase
from modules.wenet_extractor.transducer.search.greedy_search import basic_greedy_search
from modules.wenet_extractor.transducer.search.prefix_beam_search import (
    PrefixBeamSearch,
)
from modules.wenet_extractor.transformer.asr_model import ASRModel
from modules.wenet_extractor.transformer.ctc import CTC
from modules.wenet_extractor.transformer.decoder import (
    BiTransformerDecoder,
    TransformerDecoder,
)
from modules.wenet_extractor.transformer.label_smoothing_loss import LabelSmoothingLoss
from modules.wenet_extractor.utils.common import (
    IGNORE_ID,
    add_blank,
    add_sos_eos,
    reverse_pad_list,
)


class Transducer(ASRModel):
    """Transducer-ctc-attention hybrid Encoder-Predictor-Decoder model"""

    def __init__(
        self,
        vocab_size: int,
        blank: int,
        encoder: nn.Module,
        predictor: PredictorBase,
        joint: nn.Module,
        attention_decoder: Optional[
            Union[TransformerDecoder, BiTransformerDecoder]
        ] = None,
        ctc: Optional[CTC] = None,
        ctc_weight: float = 0,
        ignore_id: int = IGNORE_ID,
        reverse_weight: float = 0.0,
        lsm_weight: float = 0.0,
        length_normalized_loss: bool = False,
        transducer_weight: float = 1.0,
        attention_weight: float = 0.0,
    ) -> None:
        assert attention_weight + ctc_weight + transducer_weight == 1.0
        super().__init__(
            vocab_size,
            encoder,
            attention_decoder,
            ctc,
            ctc_weight,
            ignore_id,
            reverse_weight,
            lsm_weight,
            length_normalized_loss,
        )

        self.blank = blank
        self.transducer_weight = transducer_weight
        self.attention_decoder_weight = 1 - self.transducer_weight - self.ctc_weight

        self.predictor = predictor
        self.joint = joint
        self.bs = None

        # Note(Mddct): decoder also means predictor in transducer,
        # but here decoder is attention decoder
        del self.criterion_att
        if attention_decoder is not None:
            self.criterion_att = LabelSmoothingLoss(
                size=vocab_size,
                padding_idx=ignore_id,
                smoothing=lsm_weight,
                normalize_length=length_normalized_loss,
            )

    def forward(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        text: torch.Tensor,
        text_lengths: torch.Tensor,
    ) -> Dict[str, Optional[torch.Tensor]]:
        """Frontend + Encoder + predictor + joint + loss

        Args:
            speech: (Batch, Length, ...)
            speech_lengths: (Batch, )
            text: (Batch, Length)
            text_lengths: (Batch,)
        """
        assert text_lengths.dim() == 1, text_lengths.shape
        # Check that batch_size is unified
        assert (
            speech.shape[0]
            == speech_lengths.shape[0]
            == text.shape[0]
            == text_lengths.shape[0]
        ), (speech.shape, speech_lengths.shape, text.shape, text_lengths.shape)

        # Encoder
        encoder_out, encoder_mask = self.encoder(speech, speech_lengths)
        encoder_out_lens = encoder_mask.squeeze(1).sum(1)
        # predictor
        ys_in_pad = add_blank(text, self.blank, self.ignore_id)
        predictor_out = self.predictor(ys_in_pad)
        # joint
        joint_out = self.joint(encoder_out, predictor_out)
        # NOTE(Mddct): some loss implementation require pad valid is zero
        # torch.int32 rnnt_loss required
        rnnt_text = text.to(torch.int64)
        rnnt_text = torch.where(rnnt_text == self.ignore_id, 0, rnnt_text).to(
            torch.int32
        )
        rnnt_text_lengths = text_lengths.to(torch.int32)
        encoder_out_lens = encoder_out_lens.to(torch.int32)
        loss = torchaudio.functional.rnnt_loss(
            joint_out,
            rnnt_text,
            encoder_out_lens,
            rnnt_text_lengths,
            blank=self.blank,
            reduction="mean",
        )
        loss_rnnt = loss

        loss = self.transducer_weight * loss
        # optional attention decoder
        loss_att: Optional[torch.Tensor] = None
        if self.attention_decoder_weight != 0.0 and self.decoder is not None:
            loss_att, _ = self._calc_att_loss(
                encoder_out, encoder_mask, text, text_lengths
            )

        # optional ctc
        loss_ctc: Optional[torch.Tensor] = None
        if self.ctc_weight != 0.0 and self.ctc is not None:
            loss_ctc = self.ctc(encoder_out, encoder_out_lens, text, text_lengths)
        else:
            loss_ctc = None

        if loss_ctc is not None:
            loss = loss + self.ctc_weight * loss_ctc.sum()
        if loss_att is not None:
            loss = loss + self.attention_decoder_weight * loss_att.sum()
        # NOTE: 'loss' must be in dict
        return {
            "loss": loss,
            "loss_att": loss_att,
            "loss_ctc": loss_ctc,
            "loss_rnnt": loss_rnnt,
        }

    def init_bs(self):
        if self.bs is None:
            self.bs = PrefixBeamSearch(
                self.encoder, self.predictor, self.joint, self.ctc, self.blank
            )

    def _cal_transducer_score(
        self,
        encoder_out: torch.Tensor,
        encoder_mask: torch.Tensor,
        hyps_lens: torch.Tensor,
        hyps_pad: torch.Tensor,
    ):
        # ignore id -> blank, add blank at head
        hyps_pad_blank = add_blank(hyps_pad, self.blank, self.ignore_id)
        xs_in_lens = encoder_mask.squeeze(1).sum(1).int()

        # 1. Forward predictor
        predictor_out = self.predictor(hyps_pad_blank)
        # 2. Forward joint
        joint_out = self.joint(encoder_out, predictor_out)
        rnnt_text = hyps_pad.to(torch.int64)
        rnnt_text = torch.where(rnnt_text == self.ignore_id, 0, rnnt_text).to(
            torch.int32
        )
        # 3. Compute transducer loss
        loss_td = torchaudio.functional.rnnt_loss(
            joint_out,
            rnnt_text,
            xs_in_lens,
            hyps_lens.int(),
            blank=self.blank,
            reduction="none",
        )
        return loss_td * -1

    def _cal_attn_score(
        self,
        encoder_out: torch.Tensor,
        encoder_mask: torch.Tensor,
        hyps_pad: torch.Tensor,
        hyps_lens: torch.Tensor,
    ):
        # (beam_size, max_hyps_len)
        ori_hyps_pad = hyps_pad

        # td_score = loss_td * -1
        hyps_pad, _ = add_sos_eos(hyps_pad, self.sos, self.eos, self.ignore_id)
        hyps_lens = hyps_lens + 1  # Add <sos> at begining
        # used for right to left decoder
        r_hyps_pad = reverse_pad_list(ori_hyps_pad, hyps_lens, self.ignore_id)
        r_hyps_pad, _ = add_sos_eos(r_hyps_pad, self.sos, self.eos, self.ignore_id)
        decoder_out, r_decoder_out, _ = self.decoder(
            encoder_out,
            encoder_mask,
            hyps_pad,
            hyps_lens,
            r_hyps_pad,
            self.reverse_weight,
        )  # (beam_size, max_hyps_len, vocab_size)
        decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1)
        decoder_out = decoder_out.cpu().numpy()
        # r_decoder_out will be 0.0, if reverse_weight is 0.0 or decoder is a
        # conventional transformer decoder.
        r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1)
        r_decoder_out = r_decoder_out.cpu().numpy()
        return decoder_out, r_decoder_out

    def beam_search(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        decoding_chunk_size: int = -1,
        beam_size: int = 5,
        num_decoding_left_chunks: int = -1,
        simulate_streaming: bool = False,
        ctc_weight: float = 0.3,
        transducer_weight: float = 0.7,
    ):
        """beam search

        Args:
            speech (torch.Tensor): (batch=1, max_len, feat_dim)
            speech_length (torch.Tensor): (batch, )
            beam_size (int): beam size for beam search
            decoding_chunk_size (int): decoding chunk for dynamic chunk
                trained model.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
                0: used for training, it's prohibited here
            simulate_streaming (bool): whether do encoder forward in a
                streaming fashion
            ctc_weight (float): ctc probability weight in transducer
                prefix beam search.
                final_prob = ctc_weight * ctc_prob + transducer_weight * transducer_prob
            transducer_weight (float): transducer probability weight in
                prefix beam search
        Returns:
            List[List[int]]: best path result

        """
        self.init_bs()
        beam, _ = self.bs.prefix_beam_search(
            speech,
            speech_lengths,
            decoding_chunk_size,
            beam_size,
            num_decoding_left_chunks,
            simulate_streaming,
            ctc_weight,
            transducer_weight,
        )
        return beam[0].hyp[1:], beam[0].score

    def transducer_attention_rescoring(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        beam_size: int,
        decoding_chunk_size: int = -1,
        num_decoding_left_chunks: int = -1,
        simulate_streaming: bool = False,
        reverse_weight: float = 0.0,
        ctc_weight: float = 0.0,
        attn_weight: float = 0.0,
        transducer_weight: float = 0.0,
        search_ctc_weight: float = 1.0,
        search_transducer_weight: float = 0.0,
        beam_search_type: str = "transducer",
    ) -> List[List[int]]:
        """beam search

        Args:
            speech (torch.Tensor): (batch=1, max_len, feat_dim)
            speech_length (torch.Tensor): (batch, )
            beam_size (int): beam size for beam search
            decoding_chunk_size (int): decoding chunk for dynamic chunk
                trained model.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
                0: used for training, it's prohibited here
            simulate_streaming (bool): whether do encoder forward in a
                streaming fashion
            ctc_weight (float): ctc probability weight using in rescoring.
                rescore_prob = ctc_weight * ctc_prob +
                               transducer_weight * (transducer_loss * -1) +
                               attn_weight * attn_prob
            attn_weight (float): attn probability weight using in rescoring.
            transducer_weight (float): transducer probability weight using in
                rescoring
            search_ctc_weight (float): ctc weight using
                               in rnnt beam search (seeing in self.beam_search)
            search_transducer_weight (float): transducer weight using
                               in rnnt beam search (seeing in self.beam_search)
        Returns:
            List[List[int]]: best path result

        """

        assert speech.shape[0] == speech_lengths.shape[0]
        assert decoding_chunk_size != 0
        if reverse_weight > 0.0:
            # decoder should be a bitransformer decoder if reverse_weight > 0.0
            assert hasattr(self.decoder, "right_decoder")
        device = speech.device
        batch_size = speech.shape[0]
        # For attention rescoring we only support batch_size=1
        assert batch_size == 1
        # encoder_out: (1, maxlen, encoder_dim), len(hyps) = beam_size
        self.init_bs()
        if beam_search_type == "transducer":
            beam, encoder_out = self.bs.prefix_beam_search(
                speech,
                speech_lengths,
                decoding_chunk_size=decoding_chunk_size,
                beam_size=beam_size,
                num_decoding_left_chunks=num_decoding_left_chunks,
                ctc_weight=search_ctc_weight,
                transducer_weight=search_transducer_weight,
            )
            beam_score = [s.score for s in beam]
            hyps = [s.hyp[1:] for s in beam]

        elif beam_search_type == "ctc":
            hyps, encoder_out = self._ctc_prefix_beam_search(
                speech,
                speech_lengths,
                beam_size=beam_size,
                decoding_chunk_size=decoding_chunk_size,
                num_decoding_left_chunks=num_decoding_left_chunks,
                simulate_streaming=simulate_streaming,
            )
            beam_score = [hyp[1] for hyp in hyps]
            hyps = [hyp[0] for hyp in hyps]
        assert len(hyps) == beam_size

        # build hyps and encoder output
        hyps_pad = pad_sequence(
            [torch.tensor(hyp, device=device, dtype=torch.long) for hyp in hyps],
            True,
            self.ignore_id,
        )  # (beam_size, max_hyps_len)
        hyps_lens = torch.tensor(
            [len(hyp) for hyp in hyps], device=device, dtype=torch.long
        )  # (beam_size,)

        encoder_out = encoder_out.repeat(beam_size, 1, 1)
        encoder_mask = torch.ones(
            beam_size, 1, encoder_out.size(1), dtype=torch.bool, device=device
        )

        # 2.1 calculate transducer score
        td_score = self._cal_transducer_score(
            encoder_out,
            encoder_mask,
            hyps_lens,
            hyps_pad,
        )
        # 2.2 calculate attention score
        decoder_out, r_decoder_out = self._cal_attn_score(
            encoder_out,
            encoder_mask,
            hyps_pad,
            hyps_lens,
        )

        # Only use decoder score for rescoring
        best_score = -float("inf")
        best_index = 0
        for i, hyp in enumerate(hyps):
            score = 0.0
            for j, w in enumerate(hyp):
                score += decoder_out[i][j][w]
            score += decoder_out[i][len(hyp)][self.eos]
            td_s = td_score[i]
            # add right to left decoder score
            if reverse_weight > 0:
                r_score = 0.0
                for j, w in enumerate(hyp):
                    r_score += r_decoder_out[i][len(hyp) - j - 1][w]
                r_score += r_decoder_out[i][len(hyp)][self.eos]
                score = score * (1 - reverse_weight) + r_score * reverse_weight
            # add ctc score
            score = (
                score * attn_weight
                + beam_score[i] * ctc_weight
                + td_s * transducer_weight
            )
            if score > best_score:
                best_score = score
                best_index = i

        return hyps[best_index], best_score

    def greedy_search(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        decoding_chunk_size: int = -1,
        num_decoding_left_chunks: int = -1,
        simulate_streaming: bool = False,
        n_steps: int = 64,
    ) -> List[List[int]]:
        """greedy search

        Args:
            speech (torch.Tensor): (batch=1, max_len, feat_dim)
            speech_length (torch.Tensor): (batch, )
            beam_size (int): beam size for beam search
            decoding_chunk_size (int): decoding chunk for dynamic chunk
                trained model.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
                0: used for training, it's prohibited here
            simulate_streaming (bool): whether do encoder forward in a
                streaming fashion
        Returns:
            List[List[int]]: best path result
        """
        # TODO(Mddct): batch decode
        assert speech.size(0) == 1
        assert speech.shape[0] == speech_lengths.shape[0]
        assert decoding_chunk_size != 0
        # TODO(Mddct): forward chunk by chunk
        _ = simulate_streaming
        # Let's assume B = batch_size
        encoder_out, encoder_mask = self.encoder(
            speech,
            speech_lengths,
            decoding_chunk_size,
            num_decoding_left_chunks,
        )
        encoder_out_lens = encoder_mask.squeeze(1).sum()
        hyps = basic_greedy_search(self, encoder_out, encoder_out_lens, n_steps=n_steps)

        return hyps

    @torch.jit.export
    def forward_encoder_chunk(
        self,
        xs: torch.Tensor,
        offset: int,
        required_cache_size: int,
        att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
        cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        return self.encoder.forward_chunk(
            xs, offset, required_cache_size, att_cache, cnn_cache
        )

    @torch.jit.export
    def forward_predictor_step(
        self, xs: torch.Tensor, cache: List[torch.Tensor]
    ) -> Tuple[torch.Tensor, List[torch.Tensor]]:
        assert len(cache) == 2
        # fake padding
        padding = torch.zeros(1, 1)
        return self.predictor.forward_step(xs, padding, cache)

    @torch.jit.export
    def forward_joint_step(
        self, enc_out: torch.Tensor, pred_out: torch.Tensor
    ) -> torch.Tensor:
        return self.joint(enc_out, pred_out)

    @torch.jit.export
    def forward_predictor_init_state(self) -> List[torch.Tensor]:
        return self.predictor.init_state(1, device=torch.device("cpu"))