Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,818 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
"""Unility functions for Transformer."""
import math
from typing import List, Tuple
import torch
from torch.nn.utils.rnn import pad_sequence
IGNORE_ID = -1
def pad_list(xs: List[torch.Tensor], pad_value: int):
"""Perform padding for the list of tensors.
Args:
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
pad_value (float): Value for padding.
Returns:
Tensor: Padded tensor (B, Tmax, `*`).
Examples:
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
>>> x
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
>>> pad_list(x, 0)
tensor([[1., 1., 1., 1.],
[1., 1., 0., 0.],
[1., 0., 0., 0.]])
"""
n_batch = len(xs)
max_len = max([x.size(0) for x in xs])
pad = torch.zeros(n_batch, max_len, dtype=xs[0].dtype, device=xs[0].device)
pad = pad.fill_(pad_value)
for i in range(n_batch):
pad[i, : xs[i].size(0)] = xs[i]
return pad
def add_blank(ys_pad: torch.Tensor, blank: int, ignore_id: int) -> torch.Tensor:
"""Prepad blank for transducer predictor
Args:
ys_pad (torch.Tensor): batch of padded target sequences (B, Lmax)
blank (int): index of <blank>
Returns:
ys_in (torch.Tensor) : (B, Lmax + 1)
Examples:
>>> blank = 0
>>> ignore_id = -1
>>> ys_pad
tensor([[ 1, 2, 3, 4, 5],
[ 4, 5, 6, -1, -1],
[ 7, 8, 9, -1, -1]], dtype=torch.int32)
>>> ys_in = add_blank(ys_pad, 0, -1)
>>> ys_in
tensor([[0, 1, 2, 3, 4, 5],
[0, 4, 5, 6, 0, 0],
[0, 7, 8, 9, 0, 0]])
"""
bs = ys_pad.size(0)
_blank = torch.tensor(
[blank], dtype=torch.long, requires_grad=False, device=ys_pad.device
)
_blank = _blank.repeat(bs).unsqueeze(1) # [bs,1]
out = torch.cat([_blank, ys_pad], dim=1) # [bs, Lmax+1]
return torch.where(out == ignore_id, blank, out)
def add_sos_eos(
ys_pad: torch.Tensor, sos: int, eos: int, ignore_id: int
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Add <sos> and <eos> labels.
Args:
ys_pad (torch.Tensor): batch of padded target sequences (B, Lmax)
sos (int): index of <sos>
eos (int): index of <eeos>
ignore_id (int): index of padding
Returns:
ys_in (torch.Tensor) : (B, Lmax + 1)
ys_out (torch.Tensor) : (B, Lmax + 1)
Examples:
>>> sos_id = 10
>>> eos_id = 11
>>> ignore_id = -1
>>> ys_pad
tensor([[ 1, 2, 3, 4, 5],
[ 4, 5, 6, -1, -1],
[ 7, 8, 9, -1, -1]], dtype=torch.int32)
>>> ys_in,ys_out=add_sos_eos(ys_pad, sos_id , eos_id, ignore_id)
>>> ys_in
tensor([[10, 1, 2, 3, 4, 5],
[10, 4, 5, 6, 11, 11],
[10, 7, 8, 9, 11, 11]])
>>> ys_out
tensor([[ 1, 2, 3, 4, 5, 11],
[ 4, 5, 6, 11, -1, -1],
[ 7, 8, 9, 11, -1, -1]])
"""
_sos = torch.tensor(
[sos], dtype=torch.long, requires_grad=False, device=ys_pad.device
)
_eos = torch.tensor(
[eos], dtype=torch.long, requires_grad=False, device=ys_pad.device
)
ys = [y[y != ignore_id] for y in ys_pad] # parse padded ys
ys_in = [torch.cat([_sos, y], dim=0) for y in ys]
ys_out = [torch.cat([y, _eos], dim=0) for y in ys]
return pad_list(ys_in, eos), pad_list(ys_out, ignore_id)
def reverse_pad_list(
ys_pad: torch.Tensor, ys_lens: torch.Tensor, pad_value: float = -1.0
) -> torch.Tensor:
"""Reverse padding for the list of tensors.
Args:
ys_pad (tensor): The padded tensor (B, Tokenmax).
ys_lens (tensor): The lens of token seqs (B)
pad_value (int): Value for padding.
Returns:
Tensor: Padded tensor (B, Tokenmax).
Examples:
>>> x
tensor([[1, 2, 3, 4], [5, 6, 7, 0], [8, 9, 0, 0]])
>>> pad_list(x, 0)
tensor([[4, 3, 2, 1],
[7, 6, 5, 0],
[9, 8, 0, 0]])
"""
r_ys_pad = pad_sequence(
[(torch.flip(y.int()[:i], [0])) for y, i in zip(ys_pad, ys_lens)],
True,
pad_value,
)
return r_ys_pad
def th_accuracy(
pad_outputs: torch.Tensor, pad_targets: torch.Tensor, ignore_label: int
) -> float:
"""Calculate accuracy.
Args:
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
pad_targets (LongTensor): Target label tensors (B, Lmax).
ignore_label (int): Ignore label id.
Returns:
float: Accuracy value (0.0 - 1.0).
"""
pad_pred = pad_outputs.view(
pad_targets.size(0), pad_targets.size(1), pad_outputs.size(1)
).argmax(2)
mask = pad_targets != ignore_label
numerator = torch.sum(
pad_pred.masked_select(mask) == pad_targets.masked_select(mask)
)
denominator = torch.sum(mask)
return float(numerator) / float(denominator)
def get_rnn(rnn_type: str) -> torch.nn.Module:
assert rnn_type in ["rnn", "lstm", "gru"]
if rnn_type == "rnn":
return torch.nn.RNN
elif rnn_type == "lstm":
return torch.nn.LSTM
else:
return torch.nn.GRU
def get_activation(act):
"""Return activation function."""
# Lazy load to avoid unused import
from modules.wenet_extractor.transformer.swish import Swish
activation_funcs = {
"hardtanh": torch.nn.Hardtanh,
"tanh": torch.nn.Tanh,
"relu": torch.nn.ReLU,
"selu": torch.nn.SELU,
"swish": getattr(torch.nn, "SiLU", Swish),
"gelu": torch.nn.GELU,
}
return activation_funcs[act]()
def get_subsample(config):
input_layer = config["encoder_conf"]["input_layer"]
assert input_layer in ["conv2d", "conv2d6", "conv2d8"]
if input_layer == "conv2d":
return 4
elif input_layer == "conv2d6":
return 6
elif input_layer == "conv2d8":
return 8
def remove_duplicates_and_blank(hyp: List[int]) -> List[int]:
new_hyp: List[int] = []
cur = 0
while cur < len(hyp):
if hyp[cur] != 0:
new_hyp.append(hyp[cur])
prev = cur
while cur < len(hyp) and hyp[cur] == hyp[prev]:
cur += 1
return new_hyp
def replace_duplicates_with_blank(hyp: List[int]) -> List[int]:
new_hyp: List[int] = []
cur = 0
while cur < len(hyp):
new_hyp.append(hyp[cur])
prev = cur
cur += 1
while cur < len(hyp) and hyp[cur] == hyp[prev] and hyp[cur] != 0:
new_hyp.append(0)
cur += 1
return new_hyp
def log_add(args: List[int]) -> float:
"""
Stable log add
"""
if all(a == -float("inf") for a in args):
return -float("inf")
a_max = max(args)
lsp = math.log(sum(math.exp(a - a_max) for a in args))
return a_max + lsp
|