File size: 4,926 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) 2023 Amphion.

# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""

This module aims to be an entrance that integrates all the functions for extracting features from raw audio.

The common audio features include:
1. Acoustic features such as Mel Spectrogram, F0, Energy, etc.
2. Content features such as phonetic posteriorgrams (PPG) and bottleneck features (BNF) from pretrained models

Note: 
All the features extraction are designed to utilize GPU to the maximum extent, which can ease the on-the-fly extraction for large-scale dataset.

"""

import torch
from torch.nn.utils.rnn import pad_sequence

from utils.mel import extract_mel_features
from utils.f0 import get_f0 as extract_f0_features
from processors.content_extractor import (
    WhisperExtractor,
    ContentvecExtractor,
    WenetExtractor,
)


class AudioFeaturesExtractor:
    def __init__(self, cfg):
        """
        Args:
            cfg: Amphion config that would be used to specify the processing parameters
        """
        self.cfg = cfg

    def get_mel_spectrogram(self, wavs):
        """Get Mel Spectrogram Features

        Args:
            wavs: Tensor whose shape is (B, T)

        Returns:
            Tensor whose shape is (B, n_mels, n_frames)
        """
        return extract_mel_features(y=wavs, cfg=self.cfg.preprocess)

    def get_f0(self, wavs, wav_lens=None, use_interpolate=False, return_uv=False):
        """Get F0 Features

        Args:
            wavs: Tensor whose shape is (B, T)

        Returns:
            Tensor whose shape is (B, n_frames)
        """
        device = wavs.device

        f0s = []
        uvs = []
        for i, w in enumerate(wavs):
            if wav_lens is not None:
                w = w[: wav_lens[i]]

            f0, uv = extract_f0_features(
                # Use numpy to extract
                w.cpu().numpy(),
                self.cfg.preprocess,
                use_interpolate=use_interpolate,
                return_uv=True,
            )
            f0s.append(torch.as_tensor(f0, device=device))
            uvs.append(torch.as_tensor(uv, device=device, dtype=torch.long))

        # (B, n_frames)
        f0s = pad_sequence(f0s, batch_first=True, padding_value=0)
        uvs = pad_sequence(uvs, batch_first=True, padding_value=0)

        if return_uv:
            return f0s, uvs

        return f0s

    def get_energy(self, wavs, mel_spec=None):
        """Get Energy Features

        Args:
            wavs: Tensor whose shape is (B, T)
            mel_spec: Tensor whose shape is (B, n_mels, n_frames)

        Returns:
            Tensor whose shape is (B, n_frames)
        """
        if mel_spec is None:
            mel_spec = self.get_mel_spectrogram(wavs)

        energies = (mel_spec.exp() ** 2).sum(dim=1).sqrt()
        return energies

    def get_whisper_features(self, wavs, target_frame_len):
        """Get Whisper Features

        Args:
            wavs: Tensor whose shape is (B, T)
            target_frame_len: int

        Returns:
            Tensor whose shape is (B, target_frame_len, D)
        """
        if not hasattr(self, "whisper_extractor"):
            self.whisper_extractor = WhisperExtractor(self.cfg)
            self.whisper_extractor.load_model()

        whisper_feats = self.whisper_extractor.extract_content_features(wavs)
        whisper_feats = self.whisper_extractor.ReTrans(whisper_feats, target_frame_len)
        return whisper_feats

    def get_contentvec_features(self, wavs, target_frame_len):
        """Get ContentVec Features

        Args:
            wavs: Tensor whose shape is (B, T)
            target_frame_len: int

        Returns:
            Tensor whose shape is (B, target_frame_len, D)
        """
        if not hasattr(self, "contentvec_extractor"):
            self.contentvec_extractor = ContentvecExtractor(self.cfg)
            self.contentvec_extractor.load_model()

        contentvec_feats = self.contentvec_extractor.extract_content_features(wavs)
        contentvec_feats = self.contentvec_extractor.ReTrans(
            contentvec_feats, target_frame_len
        )
        return contentvec_feats

    def get_wenet_features(self, wavs, target_frame_len, wav_lens=None):
        """Get WeNet Features

        Args:
            wavs: Tensor whose shape is (B, T)
            target_frame_len: int
            wav_lens: Tensor whose shape is (B)

        Returns:
            Tensor whose shape is (B, target_frame_len, D)
        """
        if not hasattr(self, "wenet_extractor"):
            self.wenet_extractor = WenetExtractor(self.cfg)
            self.wenet_extractor.load_model()

        wenet_feats = self.wenet_extractor.extract_content_features(wavs, lens=wav_lens)
        wenet_feats = self.wenet_extractor.ReTrans(wenet_feats, target_frame_len)
        return wenet_feats