Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,396 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import re
from preprocessors import (
m4singer,
opencpop,
svcc,
pjs,
popbutfy,
opensinger,
popcs,
kising,
csd,
opera,
nus48e,
svcceval,
vctk,
vctksample,
libritts,
lijian,
cdmusiceval,
ljspeech,
coco,
cocoeval,
customsvcdataset,
vocalist,
ljspeech_vocoder,
librilight,
hifitts,
)
def preprocess_dataset(
dataset, dataset_path, output_path, cfg, task_type, is_custom_dataset=False
):
"""Call specific function to handle specific dataset
Args:
dataset (str): name of a dataset, e.g. opencpop, m4singer
dataset_path (str): path to dataset
output_path (str): path to store preprocessing result files
"""
if is_custom_dataset:
if task_type == "svc":
customsvcdataset.main(output_path, dataset_path, dataset_name=dataset)
else:
raise NotImplementedError(
"Custom dataset for {} task not implemented!".format(cfg.task_type)
)
if re.match("opencpop*", dataset):
opencpop.main(dataset, output_path, dataset_path)
if dataset == "m4singer":
m4singer.main(output_path, dataset_path)
if dataset == "svcc":
svcc.main(output_path, dataset_path)
if dataset == "pjs":
pjs.main(output_path, dataset_path)
if dataset == "popbutfy":
popbutfy.main(output_path, dataset_path)
if dataset == "opensinger":
opensinger.main(output_path, dataset_path)
if dataset == "popcs":
popcs.main(output_path, dataset_path)
if dataset == "kising":
kising.main(output_path, dataset_path)
if dataset == "csd":
csd.main(output_path, dataset_path)
if dataset == "opera":
opera.main(output_path, dataset_path)
if dataset == "nus48e":
nus48e.main(output_path, dataset_path)
if dataset == "vctk":
vctk.main(output_path, dataset_path)
if dataset == "svcceval":
svcceval.main(output_path, dataset_path)
if dataset == "libritts":
libritts.main(output_path, dataset_path)
if dataset == "lijian":
lijian.main(output_path, dataset_path)
if dataset == "cdmusiceval":
cdmusiceval.main(output_path, dataset_path)
if dataset == "LJSpeech":
ljspeech.main(output_path, dataset_path, cfg)
if dataset == "ljspeech":
ljspeech_vocoder.main(output_path, dataset_path)
if dataset == "coco":
coco.main(output_path, dataset_path)
if dataset == "cocoeval":
cocoeval.main(output_path, dataset_path)
if dataset == "vocalist":
vocalist.main(output_path, dataset_path)
if dataset == "librilight":
librilight.main(output_path, dataset_path, cfg)
if dataset == "hifitts":
hifitts.main(output_path, dataset_path)
def prepare_align(dataset, dataset_path, cfg, output_path):
"""Call specific function to handle specific dataset
Args:
dataset (str): name of a dataset, e.g. ljspeech
dataset_path (str): path to dataset
output_path (str): path to store preprocessing result files
"""
if dataset == "LJSpeech":
ljspeech.prepare_align(dataset, dataset_path, cfg, output_path)
|