Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,959 Bytes
8c92a11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import sys
import numpy as np
import json
import argparse
import whisper
import torch
from glob import glob
from tqdm import tqdm
from collections import defaultdict
from evaluation.metrics.energy.energy_rmse import extract_energy_rmse
from evaluation.metrics.energy.energy_pearson_coefficients import (
extract_energy_pearson_coeffcients,
)
from evaluation.metrics.f0.f0_pearson_coefficients import extract_fpc
from evaluation.metrics.f0.f0_periodicity_rmse import extract_f0_periodicity_rmse
from evaluation.metrics.f0.f0_rmse import extract_f0rmse
from evaluation.metrics.f0.v_uv_f1 import extract_f1_v_uv
from evaluation.metrics.intelligibility.character_error_rate import extract_cer
from evaluation.metrics.intelligibility.word_error_rate import extract_wer
from evaluation.metrics.similarity.speaker_similarity import extract_similarity
from evaluation.metrics.spectrogram.frechet_distance import extract_fad
from evaluation.metrics.spectrogram.mel_cepstral_distortion import extract_mcd
from evaluation.metrics.spectrogram.multi_resolution_stft_distance import extract_mstft
from evaluation.metrics.spectrogram.pesq import extract_pesq
from evaluation.metrics.spectrogram.scale_invariant_signal_to_distortion_ratio import (
extract_si_sdr,
)
from evaluation.metrics.spectrogram.scale_invariant_signal_to_noise_ratio import (
extract_si_snr,
)
from evaluation.metrics.spectrogram.short_time_objective_intelligibility import (
extract_stoi,
)
METRIC_FUNC = {
"energy_rmse": extract_energy_rmse,
"energy_pc": extract_energy_pearson_coeffcients,
"fpc": extract_fpc,
"f0_periodicity_rmse": extract_f0_periodicity_rmse,
"f0rmse": extract_f0rmse,
"v_uv_f1": extract_f1_v_uv,
"cer": extract_cer,
"wer": extract_wer,
"similarity": extract_similarity,
"fad": extract_fad,
"mcd": extract_mcd,
"mstft": extract_mstft,
"pesq": extract_pesq,
"si_sdr": extract_si_sdr,
"si_snr": extract_si_snr,
"stoi": extract_stoi,
}
def calc_metric(
ref_dir,
deg_dir,
dump_dir,
metrics,
**kwargs,
):
result = defaultdict()
for metric in tqdm(metrics):
if metric in ["fad", "similarity"]:
result[metric] = str(METRIC_FUNC[metric](ref_dir, deg_dir, kwargs=kwargs))
continue
audios_ref = []
audios_deg = []
files = glob(deg_dir + "/*.wav")
for file in files:
audios_deg.append(file)
uid = file.split("/")[-1].split(".wav")[0]
file_gt = ref_dir + "/{}.wav".format(uid)
audios_ref.append(file_gt)
if metric in ["wer", "cer"] and kwargs["intelligibility_mode"] == "gt_content":
ltr_path = kwargs["ltr_path"]
tmpltrs = {}
with open(ltr_path, "r") as f:
for line in f:
paras = line.replace("\n", "").split("|")
paras[1] = paras[1].replace(" ", "")
paras[1] = paras[1].replace(".", "")
paras[1] = paras[1].replace("'", "")
paras[1] = paras[1].replace("-", "")
paras[1] = paras[1].replace(",", "")
paras[1] = paras[1].replace("!", "")
paras[1] = paras[1].lower()
tmpltrs[paras[0]] = paras[1]
ltrs = []
files = glob(ref_dir + "/*.wav")
for file in files:
ltrs.append(tmpltrs[os.path.basename(file)])
if metric in ["v_uv_f1"]:
tp_total = 0
fp_total = 0
fn_total = 0
for i in tqdm(range(len(audios_ref))):
audio_ref = audios_ref[i]
audio_deg = audios_deg[i]
tp, fp, fn = METRIC_FUNC[metric](audio_ref, audio_deg, kwargs=kwargs)
tp_total += tp
fp_total += fp
fn_total += fn
result[metric] = str(tp_total / (tp_total + (fp_total + fn_total) / 2))
else:
scores = []
for i in tqdm(range(len(audios_ref))):
audio_ref = audios_ref[i]
audio_deg = audios_deg[i]
if metric in ["wer", "cer"]:
model = whisper.load_model("large")
mode = kwargs["intelligibility_mode"]
if torch.cuda.is_available():
device = torch.device("cuda")
model = model.to(device)
if mode == "gt_audio":
kwargs["audio_ref"] = audio_ref
kwargs["audio_deg"] = audio_deg
score = METRIC_FUNC[metric](
model,
kwargs=kwargs,
)
elif mode == "gt_content":
kwargs["content_gt"] = ltrs[i]
kwargs["audio_deg"] = audio_deg
score = METRIC_FUNC[metric](
model,
kwargs=kwargs,
)
else:
score = METRIC_FUNC[metric](
audio_ref,
audio_deg,
kwargs=kwargs,
)
if not np.isnan(score):
scores.append(score)
scores = np.array(scores)
result["{}".format(metric)] = str(np.mean(scores))
data = json.dumps(result, indent=4)
with open(os.path.join(dump_dir, "result.json"), "w", newline="\n") as f:
f.write(data)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--ref_dir",
type=str,
help="Path to the reference audio folder.",
)
parser.add_argument(
"--deg_dir",
type=str,
help="Path to the test audio folder.",
)
parser.add_argument(
"--dump_dir",
type=str,
help="Path to dump the results.",
)
parser.add_argument(
"--metrics",
nargs="+",
help="Metrics used to evaluate.",
)
parser.add_argument(
"--fs",
type=str,
default="None",
help="(Optional) Sampling rate",
)
parser.add_argument(
"--align_method",
type=str,
default="dtw",
help="(Optional) Method for aligning feature length. ['cut', 'dtw']",
)
parser.add_argument(
"--db_scale",
type=str,
default="True",
help="(Optional) Wether or not computing energy related metrics in db scale.",
)
parser.add_argument(
"--f0_subtract_mean",
type=str,
default="True",
help="(Optional) Wether or not computing f0 related metrics with mean value subtracted.",
)
parser.add_argument(
"--similarity_model",
type=str,
default="wavlm",
help="(Optional)The model for computing speaker similarity. ['rawnet', 'wavlm', 'resemblyzer']",
)
parser.add_argument(
"--similarity_mode",
type=str,
default="pairwith",
help="(Optional)The method of calculating similarity, where set to overall means computing \
the speaker similarity between two folder of audios content freely, and set to pairwith means \
computing the speaker similarity between a seires of paired gt/pred audios",
)
parser.add_argument(
"--ltr_path",
type=str,
default="None",
help="(Optional)Path to the transcription file,Note that the format in the transcription \
file is 'file name|transcription'",
)
parser.add_argument(
"--intelligibility_mode",
type=str,
default="gt_audio",
help="(Optional)The method of calculating WER and CER, where set to gt_audio means selecting \
the recognition content of the reference audio as the target, and set to gt_content means \
using transcription as the target",
)
parser.add_argument(
"--language",
type=str,
default="english",
help="(Optional)['english','chinese']",
)
args = parser.parse_args()
calc_metric(
args.ref_dir,
args.deg_dir,
args.dump_dir,
args.metrics,
fs=int(args.fs) if args.fs != "None" else None,
method=args.align_method,
db_scale=True if args.db_scale == "True" else False,
need_mean=True if args.f0_subtract_mean == "True" else False,
model_name=args.similarity_model,
similarity_mode=args.similarity_mode,
ltr_path=args.ltr_path,
intelligibility_mode=args.intelligibility_mode,
language=args.language,
)
|