File size: 9,122 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import random
import re
import time
from abc import abstractmethod
from pathlib import Path

import accelerate
import json5
import numpy as np
import torch
from accelerate.logging import get_logger
from torch.utils.data import DataLoader

from models.vocoders.vocoder_inference import synthesis
from utils.io import save_audio
from utils.util import load_config
from utils.audio_slicer import is_silence

EPS = 1.0e-12


class BaseInference(object):
    def __init__(self, args=None, cfg=None, infer_type="from_dataset"):
        super().__init__()

        start = time.monotonic_ns()
        self.args = args
        self.cfg = cfg

        assert infer_type in ["from_dataset", "from_file"]
        self.infer_type = infer_type

        # init with accelerate
        self.accelerator = accelerate.Accelerator()
        self.accelerator.wait_for_everyone()

        # Use accelerate logger for distributed inference
        with self.accelerator.main_process_first():
            self.logger = get_logger("inference", log_level=args.log_level)

        # Log some info
        self.logger.info("=" * 56)
        self.logger.info("||\t\t" + "New inference process started." + "\t\t||")
        self.logger.info("=" * 56)
        self.logger.info("\n")
        self.logger.debug(f"Using {args.log_level.upper()} logging level.")

        self.acoustics_dir = args.acoustics_dir
        self.logger.debug(f"Acoustic dir: {args.acoustics_dir}")
        self.vocoder_dir = args.vocoder_dir
        self.logger.debug(f"Vocoder dir: {args.vocoder_dir}")
        # should be in svc inferencer
        # self.target_singer = args.target_singer
        # self.logger.info(f"Target singers: {args.target_singer}")
        # self.trans_key = args.trans_key
        # self.logger.info(f"Trans key: {args.trans_key}")

        os.makedirs(args.output_dir, exist_ok=True)

        # set random seed
        with self.accelerator.main_process_first():
            start = time.monotonic_ns()
            self._set_random_seed(self.cfg.train.random_seed)
            end = time.monotonic_ns()
            self.logger.debug(
                f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
            )
            self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")

        # setup data_loader
        with self.accelerator.main_process_first():
            self.logger.info("Building dataset...")
            start = time.monotonic_ns()
            self.test_dataloader = self._build_dataloader()
            end = time.monotonic_ns()
            self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")

        # setup model
        with self.accelerator.main_process_first():
            self.logger.info("Building model...")
            start = time.monotonic_ns()
            self.model = self._build_model()
            end = time.monotonic_ns()
            # self.logger.debug(self.model)
            self.logger.info(f"Building model done in {(end - start) / 1e6:.3f}ms")

        # init with accelerate
        self.logger.info("Initializing accelerate...")
        start = time.monotonic_ns()
        self.accelerator = accelerate.Accelerator()
        self.model = self.accelerator.prepare(self.model)
        end = time.monotonic_ns()
        self.accelerator.wait_for_everyone()
        self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.3f}ms")

        with self.accelerator.main_process_first():
            self.logger.info("Loading checkpoint...")
            start = time.monotonic_ns()
            # TODO: Also, suppose only use latest one yet
            self.__load_model(os.path.join(args.acoustics_dir, "checkpoint"))
            end = time.monotonic_ns()
            self.logger.info(f"Loading checkpoint done in {(end - start) / 1e6:.3f}ms")

        self.model.eval()
        self.accelerator.wait_for_everyone()

    ### Abstract methods ###
    @abstractmethod
    def _build_test_dataset(self):
        pass

    @abstractmethod
    def _build_model(self):
        pass

    @abstractmethod
    @torch.inference_mode()
    def _inference_each_batch(self, batch_data):
        pass

    ### Abstract methods end ###

    @torch.inference_mode()
    def inference(self):
        for i, batch in enumerate(self.test_dataloader):
            y_pred = self._inference_each_batch(batch).cpu()

            # Judge whether the min-max normliazation is used
            if self.cfg.preprocess.use_min_max_norm_mel:
                mel_min, mel_max = self.test_dataset.target_mel_extrema
                y_pred = (y_pred + 1.0) / 2.0 * (mel_max - mel_min + EPS) + mel_min

            y_ls = y_pred.chunk(self.test_batch_size)
            tgt_ls = batch["target_len"].cpu().chunk(self.test_batch_size)
            j = 0
            for it, l in zip(y_ls, tgt_ls):
                l = l.item()
                it = it.squeeze(0)[:l]
                uid = self.test_dataset.metadata[i * self.test_batch_size + j]["Uid"]
                torch.save(it, os.path.join(self.args.output_dir, f"{uid}.pt"))
                j += 1

        vocoder_cfg, vocoder_ckpt = self._parse_vocoder(self.args.vocoder_dir)

        res = synthesis(
            cfg=vocoder_cfg,
            vocoder_weight_file=vocoder_ckpt,
            n_samples=None,
            pred=[
                torch.load(
                    os.path.join(self.args.output_dir, "{}.pt".format(i["Uid"]))
                ).numpy(force=True)
                for i in self.test_dataset.metadata
            ],
        )

        output_audio_files = []
        for it, wav in zip(self.test_dataset.metadata, res):
            uid = it["Uid"]
            file = os.path.join(self.args.output_dir, f"{uid}.wav")
            output_audio_files.append(file)

            wav = wav.numpy(force=True)
            save_audio(
                file,
                wav,
                self.cfg.preprocess.sample_rate,
                add_silence=False,
                turn_up=not is_silence(wav, self.cfg.preprocess.sample_rate),
            )
            os.remove(os.path.join(self.args.output_dir, f"{uid}.pt"))

        return sorted(output_audio_files)

    # TODO: LEGACY CODE
    def _build_dataloader(self):
        datasets, collate = self._build_test_dataset()
        self.test_dataset = datasets(self.args, self.cfg, self.infer_type)
        self.test_collate = collate(self.cfg)
        self.test_batch_size = min(
            self.cfg.train.batch_size, len(self.test_dataset.metadata)
        )
        test_dataloader = DataLoader(
            self.test_dataset,
            collate_fn=self.test_collate,
            num_workers=1,
            batch_size=self.test_batch_size,
            shuffle=False,
        )
        return test_dataloader

    def __load_model(self, checkpoint_dir: str = None, checkpoint_path: str = None):
        r"""Load model from checkpoint. If checkpoint_path is None, it will
        load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
        None, it will load the checkpoint specified by checkpoint_path. **Only use this
        method after** ``accelerator.prepare()``.
        """
        if checkpoint_path is None:
            ls = []
            for i in Path(checkpoint_dir).iterdir():
                if re.match(r"epoch-\d+_step-\d+_loss-[\d.]+", str(i.stem)):
                    ls.append(i)
            ls.sort(
                key=lambda x: int(x.stem.split("_")[-3].split("-")[-1]), reverse=True
            )
            checkpoint_path = ls[0]
        else:
            checkpoint_path = Path(checkpoint_path)
        self.accelerator.load_state(str(checkpoint_path))
        # set epoch and step
        self.epoch = int(checkpoint_path.stem.split("_")[-3].split("-")[-1])
        self.step = int(checkpoint_path.stem.split("_")[-2].split("-")[-1])
        return str(checkpoint_path)

    @staticmethod
    def _set_random_seed(seed):
        r"""Set random seed for all possible random modules."""
        random.seed(seed)
        np.random.seed(seed)
        torch.random.manual_seed(seed)

    @staticmethod
    def _parse_vocoder(vocoder_dir):
        r"""Parse vocoder config"""
        vocoder_dir = os.path.abspath(vocoder_dir)
        ckpt_list = [ckpt for ckpt in Path(vocoder_dir).glob("*.pt")]
        ckpt_list.sort(key=lambda x: int(x.stem), reverse=True)
        ckpt_path = str(ckpt_list[0])
        vocoder_cfg = load_config(
            os.path.join(vocoder_dir, "args.json"), lowercase=True
        )
        return vocoder_cfg, ckpt_path

    @staticmethod
    def __count_parameters(model):
        return sum(p.numel() for p in model.parameters())

    def __dump_cfg(self, path):
        os.makedirs(os.path.dirname(path), exist_ok=True)
        json5.dump(
            self.cfg,
            open(path, "w"),
            indent=4,
            sort_keys=True,
            ensure_ascii=False,
            quote_keys=True,
        )