File size: 29,083 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import time
import random
from pathlib import Path
import re
import glob

import accelerate
import json
import numpy as np
import torch
from accelerate.utils import ProjectConfiguration
from torch.utils.data import DataLoader
from tqdm import tqdm

import torch
import torch.nn.functional as F
import torchaudio

from accelerate.logging import get_logger

from models.codec.facodec.facodec_dataset import FAcodecDataset, FAcodecCollator
from models.codec.codec_sampler import build_samplers
from models.codec.codec_trainer import CodecTrainer

from modules.dac.nn.loss import (
    MultiScaleSTFTLoss,
    MelSpectrogramLoss,
    GANLoss,
    L1Loss,
    FocalLoss,
)
from audiotools import AudioSignal

from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC

try:
    import nemo.collections.asr as nemo_asr
except ImportError:
    print(
        "Unable to import nemo_asr, titanet outputs will be set to random values, you may only run debugging mode. DO NOT USE THIS FOR TRAINING"
    )
    nemo_asr = None

from models.codec.facodec.modules.commons import (
    build_model,
    load_checkpoint,
    load_F0_models,
    log_norm,
)
from models.codec.facodec.optimizer import build_optimizer


class FAcodecTrainer(CodecTrainer):
    def __init__(self, args, cfg):
        super().__init__()

        self.args = args
        self.cfg = cfg

        cfg.exp_name = args.exp_name

        # Init accelerator
        self._init_accelerator()
        self.accelerator.wait_for_everyone()

        # Init logger
        with self.accelerator.main_process_first():
            self.logger = get_logger(args.exp_name, log_level=args.log_level)

        self.logger.info("=" * 56)
        self.logger.info("||\t\t" + "New training process started." + "\t\t||")
        self.logger.info("=" * 56)
        self.logger.info("\n")
        self.logger.debug(f"Using {args.log_level.upper()} logging level.")
        self.logger.info(f"Experiment name: {args.exp_name}")
        self.logger.info(f"Experiment directory: {self.exp_dir}")
        self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
        if self.accelerator.is_main_process:
            os.makedirs(self.checkpoint_dir, exist_ok=True)
        self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")

        # Init training status
        self.batch_count: int = 0
        self.step: int = 0
        self.epoch: int = 0

        self.max_epoch = (
            self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf")
        )
        self.logger.info(
            "Max epoch: {}".format(
                self.max_epoch if self.max_epoch < float("inf") else "Unlimited"
            )
        )

        # Check potential erorrs
        if self.accelerator.is_main_process:
            self._check_basic_configs()
            self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride
            self.checkpoints_path = [
                [] for _ in range(len(self.save_checkpoint_stride))
            ]
            self.run_eval = self.cfg.train.run_eval

        # Set random seed
        with self.accelerator.main_process_first():
            start = time.monotonic_ns()
            self._set_random_seed(self.cfg.train.random_seed)
            end = time.monotonic_ns()
            self.logger.debug(
                f"Setting random seed done in {(end - start) / 1e6:.2f}ms"
            )
            self.logger.debug(f"Random seed: {self.cfg.train.random_seed}")

        # Build dataloader
        with self.accelerator.main_process_first():
            self.logger.info("Building dataset...")
            start = time.monotonic_ns()
            self.train_dataloader, self.valid_dataloader = self._build_dataloader()
            end = time.monotonic_ns()
            self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms")

        # Build model
        with self.accelerator.main_process_first():
            self.logger.info("Building model...")
            start = time.monotonic_ns()
            self.model = self._build_model()
            end = time.monotonic_ns()
            for _, model in self.model.items():
                self.logger.debug(model)
            self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms")
            self.logger.info(f"Model parameters: {self._count_parameters()/1e6:.2f}M")

        # Build optimizers and schedulers
        with self.accelerator.main_process_first():
            self.logger.info("Building optimizer and scheduler...")
            start = time.monotonic_ns()
            self.optimizer = self._build_optimizer()
            end = time.monotonic_ns()
            self.logger.info(
                f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms"
            )

        # Build helper models
        with self.accelerator.main_process_first():
            self.logger.info("Building helper models...")
            start = time.monotonic_ns()
            self._built_helper_model()
            end = time.monotonic_ns()
            self.logger.info(
                f"Building helper models done in {(end - start) / 1e6:.2f}ms"
            )

        # Accelerator preparing
        self.logger.info("Initializing accelerate...")
        start = time.monotonic_ns()
        for k in self.model:
            self.model[k] = self.accelerator.prepare(self.model[k])
        for k, v in self.optimizer.optimizers.items():
            self.optimizer.optimizers[k] = self.accelerator.prepare(
                self.optimizer.optimizers[k]
            )
            self.optimizer.schedulers[k] = self.accelerator.prepare(
                self.optimizer.schedulers[k]
            )
        end = time.monotonic_ns()
        self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms")

        # Build criterions
        with self.accelerator.main_process_first():
            self.logger.info("Building criterion...")
            start = time.monotonic_ns()
            self.criterions = self._build_criterion()
            end = time.monotonic_ns()
            self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms")

        # Resume checkpoints
        with self.accelerator.main_process_first():
            self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint")
            if args.resume_type:
                self.logger.info("Resuming from checkpoint...")
                start = time.monotonic_ns()
                ckpt_path = Path(args.checkpoint)
                if self._is_valid_pattern(ckpt_path.parts[-1]):
                    ckpt_path = self._load_model(args.checkpoint, args.resume_type)
                else:
                    ckpt_path = self._load_model(
                        args.checkpoint, resume_type=args.resume_type
                    )
                end = time.monotonic_ns()
                self.logger.info(
                    f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms"
                )
                self.checkpoints_path = json.load(
                    open(os.path.join(ckpt_path, "ckpts.json"), "r")
                )

            if self.accelerator.is_main_process:
                os.makedirs(self.checkpoint_dir, exist_ok=True)
            self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}")

        # Save config
        self.config_save_path = os.path.join(self.exp_dir, "args.json")

    def _build_dataset(self):
        return FAcodecDataset, FAcodecCollator

    def _build_criterion(self):
        criterions = dict()
        stft_criterion = MultiScaleSTFTLoss()
        mel_criterion = MelSpectrogramLoss(
            n_mels=[5, 10, 20, 40, 80, 160, 320],
            window_lengths=[32, 64, 128, 256, 512, 1024, 2048],
            mel_fmin=[0, 0, 0, 0, 0, 0, 0],
            mel_fmax=[None, None, None, None, None, None, None],
            pow=1.0,
            mag_weight=0.0,
            clamp_eps=1e-5,
        )
        content_criterion = FocalLoss(gamma=2)
        l1_criterion = L1Loss()
        criterions["stft"] = stft_criterion
        criterions["mel"] = mel_criterion
        criterions["l1"] = l1_criterion
        criterions["content"] = content_criterion

        return criterions

    def _build_model(self):
        model = build_model(self.cfg.model_params)
        _ = [model[key].to(self.accelerator.device) for key in model]
        return model

    def _built_helper_model(self):
        device = self.accelerator.device
        self.pitch_extractor = load_F0_models(self.cfg.F0_path).to(device)

        # load model and processor
        self.w2v_processor = Wav2Vec2Processor.from_pretrained(
            "facebook/wav2vec2-xlsr-53-espeak-cv-ft"
        )
        self.w2v_model = Wav2Vec2ForCTC.from_pretrained(
            "facebook/wav2vec2-xlsr-53-espeak-cv-ft"
        ).to(device)
        self.w2v_model.eval()

        if nemo_asr is None:
            self.speaker_model = None
        else:
            self.speaker_model = (
                nemo_asr.models.EncDecSpeakerLabelModel.from_pretrained(
                    "nvidia/speakerverification_en_titanet_large"
                )
            )
            self.speaker_model = self.speaker_model.to(device)
            self.speaker_model.eval()

    def _build_optimizer(self):
        scheduler_params = {
            "warmup_steps": self.cfg.loss_params.warmup_steps,
            "base_lr": self.cfg.loss_params.base_lr,
        }
        optimizer = build_optimizer(
            {key: self.model[key] for key in self.model},
            scheduler_params_dict={key: scheduler_params.copy() for key in self.model},
            lr=float(scheduler_params["base_lr"]),
        )

        return optimizer

    def train_loop(self):
        """Training process"""
        self.accelerator.wait_for_everyone()

        # Dump config
        if self.accelerator.is_main_process:
            self._dump_cfg(self.config_save_path)
        _ = [self.model[key].train() for key in self.model]
        self.optimizer.zero_grad()

        # Sync and start training
        self.accelerator.wait_for_everyone()
        while self.epoch < self.max_epoch:
            self.logger.info("\n")
            self.logger.info("-" * 32)
            self.logger.info("Epoch {}: ".format(self.epoch))

            # Train and Validate
            train_total_loss, train_losses = self._train_epoch()
            for key, loss in train_losses.items():
                self.logger.info("  |- Train/{} Loss: {:.6f}".format(key, loss))
                self.accelerator.log(
                    {"Epoch/Train {} Loss".format(key): loss},
                    step=self.epoch,
                )
            self.accelerator.log(
                {
                    "Epoch/Train Total Loss": train_total_loss,
                },
                step=self.epoch,
            )

            # Update scheduler
            self.accelerator.wait_for_everyone()

            # Check save checkpoint interval
            run_eval = False
            if self.accelerator.is_main_process:
                save_checkpoint = False
                for i, num in enumerate(self.save_checkpoint_stride):
                    if self.epoch % num == 0:
                        save_checkpoint = True
                        run_eval |= self.run_eval[i]

            # Save checkpoints
            self.accelerator.wait_for_everyone()
            if self.accelerator.is_main_process and save_checkpoint:
                print("Saving..")
                state = {
                    "net": {key: self.model[key].state_dict() for key in self.model},
                    "optimizer": self.optimizer.state_dict(),
                    "scheduler": self.optimizer.scheduler_state_dict(),
                    "iters": self.step,
                    "epoch": self.epoch,
                }
                save_path = os.path.join(
                    self.checkpoint_dir,
                    "FAcodec_epoch_%05d_step_%05d.pth" % (self.epoch, self.iters),
                )
                torch.save(state, save_path)
                json.dump(
                    self.checkpoints_path,
                    open(os.path.join(self.checkpoint_dir, "ckpts.json"), "w"),
                    ensure_ascii=False,
                    indent=4,
                )

            self.accelerator.wait_for_everyone()

            self.epoch += 1

        # Finish training
        self.accelerator.wait_for_everyone()
        if self.accelerator.is_main_process:
            path = os.path.join(
                self.checkpoint_dir,
                "epoch-{:04d}_step-{:07d}".format(
                    self.epoch,
                    self.step,
                ),
            )
            print("Saving..")
            state = {
                "net": {key: self.model[key].state_dict() for key in self.model},
                "optimizer": self.optimizer.state_dict(),
                "scheduler": self.optimizer.scheduler_state_dict(),
                "iters": self.step,
                "epoch": self.epoch,
            }
            save_path = os.path.join(
                self.checkpoint_dir,
                "FAcodec_epoch_%05d_step_%05d.pth" % (self.epoch, self.iters),
            )
            torch.save(state, save_path)

    def _train_epoch(self):
        """Training epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        _ = [self.model[key].train() for key in self.model]

        epoch_losses: dict = {}
        epoch_total_loss: int = 0

        for batch in tqdm(
            self.train_dataloader,
            desc=f"Training Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):
            # Get losses
            total_loss, losses = self._train_step(batch)
            self.batch_count += 1

            # Log info
            if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
                self.accelerator.log(
                    {
                        "Step/Learning Rate": (
                            self.optimizer.schedulers["encoder"].get_last_lr()[0]
                            if self.step != 0
                            else 0
                        )
                    },
                    step=self.step,
                )
                for key, _ in losses.items():
                    self.accelerator.log(
                        {
                            "Step/Train {} Loss".format(key): losses[key],
                        },
                        step=self.step,
                    )

                if not epoch_losses:
                    epoch_losses = losses
                else:
                    for key, value in losses.items():
                        epoch_losses[key] += value
                epoch_total_loss += total_loss
                self.step += 1

        # Get and log total losses
        self.accelerator.wait_for_everyone()
        epoch_total_loss = (
            epoch_total_loss
            / len(self.train_dataloader)
            * self.cfg.train.gradient_accumulation_step
        )
        for key in epoch_losses.keys():
            epoch_losses[key] = (
                epoch_losses[key]
                / len(self.train_dataloader)
                * self.cfg.train.gradient_accumulation_step
            )
        return epoch_total_loss, epoch_losses

    def _train_step(self, data):
        """Training forward step. Should return average loss of a sample over
        one batch. Provoke ``_forward_step`` is recommended except for special case.
        See ``_train_epoch`` for usage.
        """
        # Init losses
        train_losses = {}
        total_loss = 0

        # Use input feature to get predictions
        data = [b.to(self.accelerator.device, non_blocking=True) for b in data]
        waves, mels, wave_lengths, mel_input_length = data

        # extract semantic latent with w2v model
        waves_16k = torchaudio.functional.resample(waves, 24000, 16000)
        w2v_input = self.w2v_processor(
            waves_16k, sampling_rate=16000, return_tensors="pt"
        ).input_values.to(self.accelerator.device)
        with torch.no_grad():
            w2v_outputs = self.w2v_model(w2v_input.squeeze(0)).logits
            predicted_ids = torch.argmax(w2v_outputs, dim=-1)
            phone_ids = (
                F.interpolate(
                    predicted_ids.unsqueeze(0).float(), mels.size(-1), mode="nearest"
                )
                .long()
                .squeeze(0)
            )

        # get clips
        mel_seg_len = min(
            [int(mel_input_length.min().item()), self.cfg.train.max_frame_len]
        )

        gt_mel_seg = []
        wav_seg = []
        w2v_seg = []

        for bib in range(len(mel_input_length)):
            mel_length = int(mel_input_length[bib].item())

            random_start = (
                np.random.randint(0, mel_length - mel_seg_len)
                if mel_length != mel_seg_len
                else 0
            )
            gt_mel_seg.append(mels[bib, :, random_start : random_start + mel_seg_len])

            # w2v_seg.append(w2v_latent[bib, :, random_start:random_start + mel_seg_len])
            w2v_seg.append(phone_ids[bib, random_start : random_start + mel_seg_len])

            y = waves[bib][random_start * 300 : (random_start + mel_seg_len) * 300]

            wav_seg.append(y.to(self.accelerator.device))

        gt_mel_seg = torch.stack(gt_mel_seg).detach()

        wav_seg = torch.stack(wav_seg).float().detach().unsqueeze(1)
        w2v_seg = torch.stack(w2v_seg).float().detach()

        with torch.no_grad():
            real_norm = log_norm(gt_mel_seg.unsqueeze(1)).squeeze(1).detach()
            F0_real, _, _ = self.pitch_extractor(gt_mel_seg.unsqueeze(1))

        # normalize f0
        # Remove unvoiced frames (replace with -1)
        gt_glob_f0s = []
        f0_targets = []
        for bib in range(len(F0_real)):
            voiced_indices = F0_real[bib] > 5.0
            f0_voiced = F0_real[bib][voiced_indices]

            if len(f0_voiced) != 0:
                # Convert to log scale
                log_f0 = f0_voiced.log2()

                # Calculate mean and standard deviation
                mean_f0 = log_f0.mean()
                std_f0 = log_f0.std()

                # Normalize the F0 sequence
                normalized_f0 = (log_f0 - mean_f0) / std_f0

                # Create the normalized F0 sequence with unvoiced frames
                normalized_sequence = torch.zeros_like(F0_real[bib])
                normalized_sequence[voiced_indices] = normalized_f0
                normalized_sequence[~voiced_indices] = (
                    -10
                )  # Assign -10 to unvoiced frames

                gt_glob_f0s.append(mean_f0)
            else:
                normalized_sequence = torch.zeros_like(F0_real[bib]) - 10.0
                gt_glob_f0s.append(torch.tensor(0.0).to(self.accelerator.device))

            # f0_targets.append(normalized_sequence[single_side_context // 200:-single_side_context // 200])
            f0_targets.append(normalized_sequence)
        f0_targets = torch.stack(f0_targets).to(self.accelerator.device)
        # fill nan with -10
        f0_targets[torch.isnan(f0_targets)] = -10.0
        # fill inf with -10
        f0_targets[torch.isinf(f0_targets)] = -10.0
        # if frame_rate not equal to 80, interpolate f0 from frame rate of 80 to target frame rate
        if self.cfg.preprocess_params.frame_rate != 80:
            f0_targets = F.interpolate(
                f0_targets.unsqueeze(1),
                mel_seg_len // 80 * self.cfg.preprocess_params.frame_rate,
                mode="nearest",
            ).squeeze(1)
            w2v_seg = F.interpolate(
                w2v_seg,
                mel_seg_len // 80 * self.cfg.preprocess_params.frame_rate,
                mode="nearest",
            )

        wav_seg_input = wav_seg
        wav_seg_target = wav_seg

        z = self.model.encoder(wav_seg_input)
        z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer(
            z, wav_seg_input, n_c=2, full_waves=waves, wave_lens=wave_lengths
        )
        preds, rev_preds = self.model.fa_predictors(quantized, timbre)

        pred_wave = self.model.decoder(z)

        len_diff = wav_seg_target.size(-1) - pred_wave.size(-1)
        if len_diff > 0:
            wav_seg_target = wav_seg_target[..., len_diff // 2 : -len_diff // 2]

        # discriminator loss
        d_fake = self.model.discriminator(pred_wave.detach())
        d_real = self.model.discriminator(wav_seg_target)
        loss_d = 0
        for x_fake, x_real in zip(d_fake, d_real):
            loss_d += torch.mean(x_fake[-1] ** 2)
            loss_d += torch.mean((1 - x_real[-1]) ** 2)

        self.optimizer.zero_grad()
        self.accelerator.backward(loss_d)
        grad_norm_d = torch.nn.utils.clip_grad_norm_(
            self.model.discriminator.parameters(), 10.0
        )
        self.optimizer.step("discriminator")
        self.optimizer.scheduler(key="discriminator")

        # generator loss
        signal = AudioSignal(wav_seg_target, sample_rate=24000)
        recons = AudioSignal(pred_wave, sample_rate=24000)
        stft_loss = self.criterions["stft"](recons, signal)
        mel_loss = self.criterions["mel"](recons, signal)
        waveform_loss = self.criterions["l1"](recons, signal)

        d_fake = self.model.discriminator(pred_wave)
        d_real = self.model.discriminator(wav_seg_target)

        loss_g = 0
        for x_fake in d_fake:
            loss_g += torch.mean((1 - x_fake[-1]) ** 2)

        loss_feature = 0

        for i in range(len(d_fake)):
            for j in range(len(d_fake[i]) - 1):
                loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())

        pred_f0, pred_uv = preds["f0"], preds["uv"]
        rev_pred_f0, rev_pred_uv = rev_preds["rev_f0"], rev_preds["rev_uv"]

        common_min_size = min(pred_f0.size(-2), f0_targets.size(-1))
        f0_targets = f0_targets[..., :common_min_size]
        real_norm = real_norm[..., :common_min_size]

        f0_loss = F.smooth_l1_loss(
            f0_targets, pred_f0.squeeze(-1)[..., :common_min_size]
        )
        uv_loss = F.smooth_l1_loss(
            real_norm, pred_uv.squeeze(-1)[..., :common_min_size]
        )
        rev_f0_loss = (
            F.smooth_l1_loss(f0_targets, rev_pred_f0.squeeze(-1)[..., :common_min_size])
            if rev_pred_f0 is not None
            else torch.FloatTensor([0]).to(self.accelerator.device)
        )
        rev_uv_loss = (
            F.smooth_l1_loss(real_norm, rev_pred_uv.squeeze(-1)[..., :common_min_size])
            if rev_pred_uv is not None
            else torch.FloatTensor([0]).to(self.accelerator.device)
        )

        tot_f0_loss = f0_loss + rev_f0_loss
        tot_uv_loss = uv_loss + rev_uv_loss

        pred_content = preds["content"]
        rev_pred_content = rev_preds["rev_content"]

        target_content_latents = w2v_seg[..., :common_min_size]

        content_loss = self.criterions["content"](
            pred_content.transpose(1, 2)[..., :common_min_size],
            target_content_latents.long(),
        )
        rev_content_loss = (
            self.criterions["content"](
                rev_pred_content.transpose(1, 2)[..., :common_min_size],
                target_content_latents.long(),
            )
            if rev_pred_content is not None
            else torch.FloatTensor([0]).to(self.accelerator.device)
        )

        tot_content_loss = content_loss + rev_content_loss

        if self.speaker_model is not None:
            spk_logits = torch.cat(
                [
                    self.speaker_model.infer_segment(w16.cpu()[..., :wl])[1]
                    for w16, wl in zip(waves_16k, wave_lengths)
                ],
                dim=0,
            )
            spk_labels = spk_logits.argmax(dim=-1)
        else:
            spk_labels = torch.zeros([len(waves_16k)], dtype=torch.long).to(
                self.accelerator.device
            )

        spk_pred_logits = preds["timbre"]
        spk_loss = F.cross_entropy(spk_pred_logits, spk_labels)
        x_spk_pred_logits = rev_preds["x_timbre"]

        x_spk_loss = (
            F.cross_entropy(x_spk_pred_logits, spk_labels)
            if x_spk_pred_logits is not None
            else torch.FloatTensor([0]).to(self.accelerator.device)
        )

        tot_spk_loss = spk_loss + x_spk_loss

        loss_gen_all = (
            mel_loss * 15.0
            + loss_feature * 1.0
            + loss_g * 1.0
            + commitment_loss * 0.25
            + codebook_loss * 1.0
            + tot_f0_loss * 1.0
            + tot_uv_loss * 1.0
            + tot_content_loss * 5.0
            + tot_spk_loss * 5.0
        )

        self.optimizer.zero_grad()
        self.accelerator.backward(loss_gen_all)

        with torch.no_grad():
            total_loss = loss_gen_all.item()
            train_losses["stft"] = stft_loss.item()
            train_losses["mel"] = mel_loss.item()
            train_losses["l1"] = waveform_loss.item()
            train_losses["f0"] = f0_loss.item()
            train_losses["uv"] = uv_loss.item()
            train_losses["content"] = content_loss.item()
            train_losses["speaker"] = spk_loss.item()
            train_losses["rev_f0"] = rev_f0_loss.item()
            train_losses["rev_uv"] = rev_uv_loss.item()
            train_losses["rev_content"] = rev_content_loss.item()
            train_losses["rev_speaker"] = x_spk_loss.item()

            train_losses["feature"] = loss_feature.item()
            train_losses["generator"] = loss_g.item()
            train_losses["commitment"] = commitment_loss.item()
            train_losses["codebook"] = codebook_loss.item()

            # discriminators
            train_losses["discriminator"] = loss_d.item()

        return total_loss, train_losses

    def _inference(self, eval_wave):
        """Inference during training for test audios."""
        z = self.model.encoder(
            eval_wave[None, None, ...].to(self.accelerator.device).float()
        )
        z, quantized, commitment_loss, codebook_loss, timbre = self.model.quantizer(
            z, eval_wave[None, None, ...], n_c=self.cfg.model_params.n_c_codebooks
        )
        full_pred_wave = self.model.decoder(z)
        return full_pred_wave[0]

    def _load_model(self, checkpoint_path=None, resume_type="resume"):
        """Load model from checkpoint. If checkpoint_path is None, it will
        load the latest checkpoint in checkpoint_dir. If checkpoint_path is not
        None, it will load the checkpoint specified by checkpoint_path. **Only use this
        method after** ``accelerator.prepare()``.
        """
        if resume_type == "resume":
            if checkpoint_path is None:
                available_checkpoints = glob.glob(
                    os.path.join(self.checkpoint_dir, "FAcodc_epoch_*_step_*.pth")
                )
                # find the checkpoint that has the highest step number
                latest_checkpoint = max(
                    available_checkpoints,
                    key=lambda x: int(x.split("_")[-1].split(".")[0]),
                )
                earliest_checkpoint = min(
                    available_checkpoints,
                    key=lambda x: int(x.split("_")[-1].split(".")[0]),
                )
                # delete the earliest checkpoint
                if (
                    earliest_checkpoint != latest_checkpoint
                    and self.accelerator.is_main_process
                    and len(available_checkpoints) > 4
                ):
                    os.remove(earliest_checkpoint)
                    print(f"Removed {earliest_checkpoint}")
            else:
                latest_checkpoint = checkpoint_path

            self.model, self.optimizer, self.epoch, self.step = load_checkpoint(
                self.model,
                self.optimizer,
                latest_checkpoint,
                load_only_params=False,
                ignore_modules=[],
                is_distributed=self.accelerator.num_processes > 1,
            )

        else:
            raise ValueError("Invalid resume type")
        return checkpoint_path

    def _count_parameters(self):
        total_num = sum(
            sum(p.numel() for p in self.model[key].parameters()) for key in self.model
        )
        # trainable_num = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
        return total_num