File size: 22,144 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import random
import torch
from torch.nn.utils.rnn import pad_sequence
import json
import os
import numpy as np
import librosa

from utils.data_utils import *
from processors.acoustic_extractor import cal_normalized_mel, load_mel_extrema
from processors.content_extractor import (
    ContentvecExtractor,
    WhisperExtractor,
    WenetExtractor,
)
from models.base.base_dataset import (
    BaseOfflineDataset,
    BaseOfflineCollator,
    BaseOnlineDataset,
    BaseOnlineCollator,
)
from models.base.new_dataset import BaseTestDataset

EPS = 1.0e-12


class SVCOfflineDataset(BaseOfflineDataset):
    def __init__(self, cfg, dataset, is_valid=False):
        BaseOfflineDataset.__init__(self, cfg, dataset, is_valid=is_valid)

        cfg = self.cfg

        if cfg.model.condition_encoder.use_whisper:
            self.whisper_aligner = WhisperExtractor(self.cfg)
            self.utt2whisper_path = load_content_feature_path(
                self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.whisper_dir
            )

        if cfg.model.condition_encoder.use_contentvec:
            self.contentvec_aligner = ContentvecExtractor(self.cfg)
            self.utt2contentVec_path = load_content_feature_path(
                self.metadata,
                cfg.preprocess.processed_dir,
                cfg.preprocess.contentvec_dir,
            )

        if cfg.model.condition_encoder.use_mert:
            self.utt2mert_path = load_content_feature_path(
                self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.mert_dir
            )
        if cfg.model.condition_encoder.use_wenet:
            self.wenet_aligner = WenetExtractor(self.cfg)
            self.utt2wenet_path = load_content_feature_path(
                self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.wenet_dir
            )

    def __getitem__(self, index):
        single_feature = BaseOfflineDataset.__getitem__(self, index)

        utt_info = self.metadata[index]
        dataset = utt_info["Dataset"]
        uid = utt_info["Uid"]
        utt = "{}_{}".format(dataset, uid)

        if self.cfg.model.condition_encoder.use_whisper:
            assert "target_len" in single_feature.keys()
            aligned_whisper_feat = (
                self.whisper_aligner.offline_resolution_transformation(
                    np.load(self.utt2whisper_path[utt]), single_feature["target_len"]
                )
            )
            single_feature["whisper_feat"] = aligned_whisper_feat

        if self.cfg.model.condition_encoder.use_contentvec:
            assert "target_len" in single_feature.keys()
            aligned_contentvec = (
                self.contentvec_aligner.offline_resolution_transformation(
                    np.load(self.utt2contentVec_path[utt]), single_feature["target_len"]
                )
            )
            single_feature["contentvec_feat"] = aligned_contentvec

        if self.cfg.model.condition_encoder.use_mert:
            assert "target_len" in single_feature.keys()
            aligned_mert_feat = align_content_feature_length(
                np.load(self.utt2mert_path[utt]),
                single_feature["target_len"],
                source_hop=self.cfg.preprocess.mert_hop_size,
            )
            single_feature["mert_feat"] = aligned_mert_feat

        if self.cfg.model.condition_encoder.use_wenet:
            assert "target_len" in single_feature.keys()
            aligned_wenet_feat = self.wenet_aligner.offline_resolution_transformation(
                np.load(self.utt2wenet_path[utt]), single_feature["target_len"]
            )
            single_feature["wenet_feat"] = aligned_wenet_feat

        # print(single_feature.keys())
        # for k, v in single_feature.items():
        #     if type(v) in [torch.Tensor, np.ndarray]:
        #         print(k, v.shape)
        #     else:
        #         print(k, v)
        # exit()

        return self.clip_if_too_long(single_feature)

    def __len__(self):
        return len(self.metadata)

    def random_select(self, feature_seq_len, max_seq_len, ending_ts=2812):
        """
        ending_ts: to avoid invalid whisper features for over 30s audios
            2812 = 30 * 24000 // 256
        """
        ts = max(feature_seq_len - max_seq_len, 0)
        ts = min(ts, ending_ts - max_seq_len)

        start = random.randint(0, ts)
        end = start + max_seq_len
        return start, end

    def clip_if_too_long(self, sample, max_seq_len=512):
        """
        sample :
            {
                'spk_id': (1,),
                'target_len': int
                'mel': (seq_len, dim),
                'frame_pitch': (seq_len,)
                'frame_energy': (seq_len,)
                'content_vector_feat': (seq_len, dim)
            }
        """

        if sample["target_len"] <= max_seq_len:
            return sample

        start, end = self.random_select(sample["target_len"], max_seq_len)
        sample["target_len"] = end - start

        for k in sample.keys():
            if k == "audio":
                # audio should be clipped in hop_size scale
                sample[k] = sample[k][
                    start
                    * self.cfg.preprocess.hop_size : end
                    * self.cfg.preprocess.hop_size
                ]
            elif k == "audio_len":
                sample[k] = (end - start) * self.cfg.preprocess.hop_size
            elif k not in ["spk_id", "target_len"]:
                sample[k] = sample[k][start:end]

        return sample


class SVCOnlineDataset(BaseOnlineDataset):
    def __init__(self, cfg, dataset, is_valid=False):
        super().__init__(cfg, dataset, is_valid=is_valid)

        # Audio pretrained models' sample rates
        self.all_sample_rates = {self.sample_rate}
        if self.cfg.model.condition_encoder.use_whisper:
            self.all_sample_rates.add(self.cfg.preprocess.whisper_sample_rate)
        if self.cfg.model.condition_encoder.use_contentvec:
            self.all_sample_rates.add(self.cfg.preprocess.contentvec_sample_rate)
        if self.cfg.model.condition_encoder.use_wenet:
            self.all_sample_rates.add(self.cfg.preprocess.wenet_sample_rate)

        self.highest_sample_rate = max(list(self.all_sample_rates))

        # The maximum duration (seconds) for one training sample
        self.max_duration = 6.0
        self.max_n_frames = int(self.max_duration * self.highest_sample_rate)

    def random_select(self, wav, duration, wav_path):
        """
        wav: (T,)
        """
        if duration <= self.max_duration:
            return wav

        ts_frame = int((duration - self.max_duration) * self.highest_sample_rate)
        start = random.randint(0, ts_frame)
        end = start + self.max_n_frames

        if (wav[start:end] == 0).all():
            print("*" * 20)
            print("Warning! The wav file {} has a lot of silience.".format(wav_path))

            # There should be at least some frames that are not silience. Then we select them.
            assert (wav != 0).any()
            start = np.where(wav != 0)[0][0]
            end = start + self.max_n_frames

        return wav[start:end]

    def __getitem__(self, index):
        """
        single_feature: dict,
            wav: (T,)
            wav_len: int
            target_len: int
            mask: (n_frames, 1)
            spk_id

            wav_{sr}: (T,)
            wav_{sr}_len: int
        """
        single_feature = dict()

        utt_item = self.metadata[index]
        wav_path = utt_item["Path"]

        ### Use the highest sampling rate to load and randomly select ###
        highest_sr_wav, _ = librosa.load(wav_path, sr=self.highest_sample_rate)
        highest_sr_wav = self.random_select(
            highest_sr_wav, utt_item["Duration"], wav_path
        )

        ### Waveforms under all the sample rates ###
        for sr in self.all_sample_rates:
            # Resample to the required sample rate
            if sr != self.highest_sample_rate:
                wav_sr = librosa.resample(
                    highest_sr_wav, orig_sr=self.highest_sample_rate, target_sr=sr
                )
            else:
                wav_sr = highest_sr_wav

            wav_sr = torch.as_tensor(wav_sr, dtype=torch.float32)
            single_feature["wav_{}".format(sr)] = wav_sr
            single_feature["wav_{}_len".format(sr)] = len(wav_sr)

            # For target sample rate
            if sr == self.sample_rate:
                wav_len = len(wav_sr)
                frame_len = wav_len // self.hop_size

                single_feature["wav"] = wav_sr
                single_feature["wav_len"] = wav_len
                single_feature["target_len"] = frame_len
                single_feature["mask"] = torch.ones(frame_len, 1, dtype=torch.long)

        ### Speaker ID ###
        if self.cfg.preprocess.use_spkid:
            utt = "{}_{}".format(utt_item["Dataset"], utt_item["Uid"])
            single_feature["spk_id"] = torch.tensor(
                [self.spk2id[self.utt2spk[utt]]], dtype=torch.int32
            )

        return single_feature

    def __len__(self):
        return len(self.metadata)


class SVCOfflineCollator(BaseOfflineCollator):
    def __init__(self, cfg):
        super().__init__(cfg)

    def __call__(self, batch):
        parsed_batch_features = super().__call__(batch)
        return parsed_batch_features


class SVCOnlineCollator(BaseOnlineCollator):
    def __init__(self, cfg):
        super().__init__(cfg)

    def __call__(self, batch):
        """
        SVCOnlineDataset.__getitem__:
            wav: (T,)
            wav_len: int
            target_len: int
            mask: (n_frames, 1)
            spk_id: (1)

            wav_{sr}: (T,)
            wav_{sr}_len: int

        Returns:
            wav: (B, T), torch.float32
            wav_len: (B), torch.long
            target_len: (B), torch.long
            mask: (B, n_frames, 1), torch.long
            spk_id: (B, 1), torch.int32

            wav_{sr}: (B, T)
            wav_{sr}_len: (B), torch.long
        """
        packed_batch_features = dict()

        for key in batch[0].keys():
            if "_len" in key:
                packed_batch_features[key] = torch.LongTensor([b[key] for b in batch])
            else:
                packed_batch_features[key] = pad_sequence(
                    [b[key] for b in batch], batch_first=True, padding_value=0
                )
        return packed_batch_features


class SVCTestDataset(BaseTestDataset):
    def __init__(self, args, cfg, infer_type):
        BaseTestDataset.__init__(self, args, cfg, infer_type)
        self.metadata = self.get_metadata()

        target_singer = args.target_singer
        self.cfg = cfg
        self.trans_key = args.trans_key
        assert type(target_singer) == str

        self.target_singer = target_singer.split("_")[-1]
        self.target_dataset = target_singer.replace(
            "_{}".format(self.target_singer), ""
        )
        if cfg.preprocess.mel_min_max_norm:
            if self.cfg.preprocess.features_extraction_mode == "online":
                # TODO: Change the hard code

                # Using an empirical mel extrema to normalize
                self.target_mel_extrema = load_mel_extrema(cfg.preprocess, "vctk")
            else:
                self.target_mel_extrema = load_mel_extrema(
                    cfg.preprocess, self.target_dataset
                )

            self.target_mel_extrema = torch.as_tensor(
                self.target_mel_extrema[0]
            ), torch.as_tensor(self.target_mel_extrema[1])

        ######### Load source acoustic features #########
        if cfg.preprocess.use_spkid:
            spk2id_path = os.path.join(args.acoustics_dir, cfg.preprocess.spk2id)
            # utt2sp_path = os.path.join(self.data_root, cfg.preprocess.utt2spk)

            with open(spk2id_path, "r", encoding="utf-8") as f:
                self.spk2id = json.load(f)
            # print("self.spk2id", self.spk2id)

        if cfg.preprocess.use_uv:
            self.utt2uv_path = {
                f'{utt_info["Dataset"]}_{utt_info["Uid"]}': os.path.join(
                    cfg.preprocess.processed_dir,
                    utt_info["Dataset"],
                    cfg.preprocess.uv_dir,
                    utt_info["Uid"] + ".npy",
                )
                for utt_info in self.metadata
            }

        if cfg.preprocess.use_frame_pitch:
            self.utt2frame_pitch_path = {
                f'{utt_info["Dataset"]}_{utt_info["Uid"]}': os.path.join(
                    cfg.preprocess.processed_dir,
                    utt_info["Dataset"],
                    cfg.preprocess.pitch_dir,
                    utt_info["Uid"] + ".npy",
                )
                for utt_info in self.metadata
            }

            # Target F0 median
            target_f0_statistics_path = os.path.join(
                cfg.preprocess.processed_dir,
                self.target_dataset,
                cfg.preprocess.pitch_dir,
                "statistics.json",
            )
            self.target_pitch_median = json.load(
                open(target_f0_statistics_path, "r", encoding="utf-8")
            )[f"{self.target_dataset}_{self.target_singer}"]["voiced_positions"][
                "median"
            ]

            # Source F0 median (if infer from file)
            if infer_type == "from_file":
                source_audio_name = cfg.inference.source_audio_name
                source_f0_statistics_path = os.path.join(
                    cfg.preprocess.processed_dir,
                    source_audio_name,
                    cfg.preprocess.pitch_dir,
                    "statistics.json",
                )
                self.source_pitch_median = json.load(
                    open(source_f0_statistics_path, "r", encoding="utf-8")
                )[f"{source_audio_name}_{source_audio_name}"]["voiced_positions"][
                    "median"
                ]
            else:
                self.source_pitch_median = None

        if cfg.preprocess.use_frame_energy:
            self.utt2frame_energy_path = {
                f'{utt_info["Dataset"]}_{utt_info["Uid"]}': os.path.join(
                    cfg.preprocess.processed_dir,
                    utt_info["Dataset"],
                    cfg.preprocess.energy_dir,
                    utt_info["Uid"] + ".npy",
                )
                for utt_info in self.metadata
            }

        if cfg.preprocess.use_mel:
            self.utt2mel_path = {
                f'{utt_info["Dataset"]}_{utt_info["Uid"]}': os.path.join(
                    cfg.preprocess.processed_dir,
                    utt_info["Dataset"],
                    cfg.preprocess.mel_dir,
                    utt_info["Uid"] + ".npy",
                )
                for utt_info in self.metadata
            }

        ######### Load source content features' path #########
        if cfg.model.condition_encoder.use_whisper:
            self.whisper_aligner = WhisperExtractor(cfg)
            self.utt2whisper_path = load_content_feature_path(
                self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.whisper_dir
            )

        if cfg.model.condition_encoder.use_contentvec:
            self.contentvec_aligner = ContentvecExtractor(cfg)
            self.utt2contentVec_path = load_content_feature_path(
                self.metadata,
                cfg.preprocess.processed_dir,
                cfg.preprocess.contentvec_dir,
            )

        if cfg.model.condition_encoder.use_mert:
            self.utt2mert_path = load_content_feature_path(
                self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.mert_dir
            )
        if cfg.model.condition_encoder.use_wenet:
            self.wenet_aligner = WenetExtractor(cfg)
            self.utt2wenet_path = load_content_feature_path(
                self.metadata, cfg.preprocess.processed_dir, cfg.preprocess.wenet_dir
            )

    def __getitem__(self, index):
        single_feature = {}

        utt_info = self.metadata[index]
        dataset = utt_info["Dataset"]
        uid = utt_info["Uid"]
        utt = "{}_{}".format(dataset, uid)

        source_dataset = self.metadata[index]["Dataset"]

        if self.cfg.preprocess.use_spkid:
            single_feature["spk_id"] = np.array(
                [self.spk2id[f"{self.target_dataset}_{self.target_singer}"]],
                dtype=np.int32,
            )

        ######### Get Acoustic Features Item #########
        if self.cfg.preprocess.use_mel:
            mel = np.load(self.utt2mel_path[utt])
            assert mel.shape[0] == self.cfg.preprocess.n_mel  # [n_mels, T]
            if self.cfg.preprocess.use_min_max_norm_mel:
                # mel norm
                mel = cal_normalized_mel(mel, source_dataset, self.cfg.preprocess)

            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = mel.shape[1]
            single_feature["mel"] = mel.T  # [T, n_mels]

        if self.cfg.preprocess.use_frame_pitch:
            frame_pitch_path = self.utt2frame_pitch_path[utt]
            frame_pitch = np.load(frame_pitch_path)

            if self.trans_key:
                try:
                    self.trans_key = int(self.trans_key)
                except:
                    pass
                if type(self.trans_key) == int:
                    frame_pitch = transpose_key(frame_pitch, self.trans_key)
                elif self.trans_key:
                    assert self.target_singer

                    frame_pitch = pitch_shift_to_target(
                        frame_pitch, self.target_pitch_median, self.source_pitch_median
                    )

            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = len(frame_pitch)
            aligned_frame_pitch = align_length(
                frame_pitch, single_feature["target_len"]
            )
            single_feature["frame_pitch"] = aligned_frame_pitch

            if self.cfg.preprocess.use_uv:
                frame_uv_path = self.utt2uv_path[utt]
                frame_uv = np.load(frame_uv_path)
                aligned_frame_uv = align_length(frame_uv, single_feature["target_len"])
                aligned_frame_uv = [
                    0 if frame_uv else 1 for frame_uv in aligned_frame_uv
                ]
                aligned_frame_uv = np.array(aligned_frame_uv)
                single_feature["frame_uv"] = aligned_frame_uv

        if self.cfg.preprocess.use_frame_energy:
            frame_energy_path = self.utt2frame_energy_path[utt]
            frame_energy = np.load(frame_energy_path)
            if "target_len" not in single_feature.keys():
                single_feature["target_len"] = len(frame_energy)
            aligned_frame_energy = align_length(
                frame_energy, single_feature["target_len"]
            )
            single_feature["frame_energy"] = aligned_frame_energy

        ######### Get Content Features Item #########
        if self.cfg.model.condition_encoder.use_whisper:
            assert "target_len" in single_feature.keys()
            aligned_whisper_feat = (
                self.whisper_aligner.offline_resolution_transformation(
                    np.load(self.utt2whisper_path[utt]), single_feature["target_len"]
                )
            )
            single_feature["whisper_feat"] = aligned_whisper_feat

        if self.cfg.model.condition_encoder.use_contentvec:
            assert "target_len" in single_feature.keys()
            aligned_contentvec = (
                self.contentvec_aligner.offline_resolution_transformation(
                    np.load(self.utt2contentVec_path[utt]), single_feature["target_len"]
                )
            )
            single_feature["contentvec_feat"] = aligned_contentvec

        if self.cfg.model.condition_encoder.use_mert:
            assert "target_len" in single_feature.keys()
            aligned_mert_feat = align_content_feature_length(
                np.load(self.utt2mert_path[utt]),
                single_feature["target_len"],
                source_hop=self.cfg.preprocess.mert_hop_size,
            )
            single_feature["mert_feat"] = aligned_mert_feat

        if self.cfg.model.condition_encoder.use_wenet:
            assert "target_len" in single_feature.keys()
            aligned_wenet_feat = self.wenet_aligner.offline_resolution_transformation(
                np.load(self.utt2wenet_path[utt]), single_feature["target_len"]
            )
            single_feature["wenet_feat"] = aligned_wenet_feat

        return single_feature

    def __len__(self):
        return len(self.metadata)


class SVCTestCollator:
    """Zero-pads model inputs and targets based on number of frames per step"""

    def __init__(self, cfg):
        self.cfg = cfg

    def __call__(self, batch):
        packed_batch_features = dict()

        # mel: [b, T, n_mels]
        # frame_pitch, frame_energy: [1, T]
        # target_len: [1]
        # spk_id: [b, 1]
        # mask: [b, T, 1]

        for key in batch[0].keys():
            if key == "target_len":
                packed_batch_features["target_len"] = torch.LongTensor(
                    [b["target_len"] for b in batch]
                )
                masks = [
                    torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch
                ]
                packed_batch_features["mask"] = pad_sequence(
                    masks, batch_first=True, padding_value=0
                )
            else:
                values = [torch.from_numpy(b[key]) for b in batch]
                packed_batch_features[key] = pad_sequence(
                    values, batch_first=True, padding_value=0
                )

        return packed_batch_features