Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,909 Bytes
c968fc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import faster_whisper
from typing import List, Union, Optional, NamedTuple
import torch
import numpy as np
import tqdm
from whisperx.audio import N_SAMPLES, SAMPLE_RATE, load_audio, log_mel_spectrogram
from whisperx.types import TranscriptionResult, SingleSegment
from whisperx.asr import WhisperModel, FasterWhisperPipeline, find_numeral_symbol_tokens
class VadFreeFasterWhisperPipeline(FasterWhisperPipeline):
"""
FasterWhisperModel without VAD
"""
def __init__(
self,
model,
options: NamedTuple,
tokenizer=None,
device: Union[int, str, "torch.device"] = -1,
framework="pt",
language: Optional[str] = None,
suppress_numerals: bool = False,
**kwargs,
):
"""
Initialize the VadFreeFasterWhisperPipeline.
Args:
model: The Whisper model instance.
options: Transcription options.
tokenizer: The tokenizer instance.
device: Device to run the model on.
framework: The framework to use ('pt' for PyTorch).
language: The language for transcription.
suppress_numerals: Whether to suppress numeral tokens.
**kwargs: Additional keyword arguments.
Returns:
None
"""
super().__init__(
model=model,
vad=None,
vad_params={},
options=options,
tokenizer=tokenizer,
device=device,
framework=framework,
language=language,
suppress_numerals=suppress_numerals,
**kwargs,
)
def detect_language(self, audio: np.ndarray):
"""
Detect the language of the audio.
Args:
audio (np.ndarray): The input audio signal.
Returns:
tuple: Detected language and its probability.
"""
model_n_mels = self.model.feat_kwargs.get("feature_size")
if audio.shape[0] > N_SAMPLES:
# Randomly sample N_SAMPLES from the audio array
start_index = np.random.randint(0, audio.shape[0] - N_SAMPLES)
audio_sample = audio[start_index : start_index + N_SAMPLES]
else:
audio_sample = audio[:N_SAMPLES]
padding = 0 if audio.shape[0] >= N_SAMPLES else N_SAMPLES - audio.shape[0]
segment = log_mel_spectrogram(
audio_sample,
n_mels=model_n_mels if model_n_mels is not None else 80,
padding=padding,
)
encoder_output = self.model.encode(segment)
results = self.model.model.detect_language(encoder_output)
language_token, language_probability = results[0][0]
language = language_token[2:-2]
return language, language_probability
def transcribe(
self,
audio: Union[str, np.ndarray],
vad_segments: List[dict],
batch_size=None,
num_workers=0,
language=None,
task=None,
chunk_size=30,
print_progress=False,
combined_progress=False,
) -> TranscriptionResult:
"""
Transcribe the audio into text.
Args:
audio (Union[str, np.ndarray]): The input audio signal or path to audio file.
vad_segments (List[dict]): List of VAD segments.
batch_size (int, optional): Batch size for transcription. Defaults to None.
num_workers (int, optional): Number of workers for loading data. Defaults to 0.
language (str, optional): Language for transcription. Defaults to None.
task (str, optional): Task type ('transcribe' or 'translate'). Defaults to None.
chunk_size (int, optional): Size of chunks for processing. Defaults to 30.
print_progress (bool, optional): Whether to print progress. Defaults to False.
combined_progress (bool, optional): Whether to combine progress. Defaults to False.
Returns:
TranscriptionResult: The transcription result containing segments and language.
"""
if isinstance(audio, str):
audio = load_audio(audio)
def data(audio, segments):
for seg in segments:
f1 = int(seg["start"] * SAMPLE_RATE)
f2 = int(seg["end"] * SAMPLE_RATE)
yield {"inputs": audio[f1:f2]}
if self.tokenizer is None:
language = language or self.detect_language(audio)
task = task or "transcribe"
self.tokenizer = faster_whisper.tokenizer.Tokenizer(
self.model.hf_tokenizer,
self.model.model.is_multilingual,
task=task,
language=language,
)
else:
language = language or self.tokenizer.language_code
task = task or self.tokenizer.task
if task != self.tokenizer.task or language != self.tokenizer.language_code:
self.tokenizer = faster_whisper.tokenizer.Tokenizer(
self.model.hf_tokenizer,
self.model.model.is_multilingual,
task=task,
language=language,
)
if self.suppress_numerals:
previous_suppress_tokens = self.options.suppress_tokens
numeral_symbol_tokens = find_numeral_symbol_tokens(self.tokenizer)
new_suppressed_tokens = numeral_symbol_tokens + self.options.suppress_tokens
new_suppressed_tokens = list(set(new_suppressed_tokens))
self.options = self.options._replace(suppress_tokens=new_suppressed_tokens)
segments: List[SingleSegment] = []
batch_size = batch_size or self._batch_size
total_segments = len(vad_segments)
progress = tqdm.tqdm(total=total_segments, desc="Transcribing")
for idx, out in enumerate(
self.__call__(
data(audio, vad_segments),
batch_size=batch_size,
num_workers=num_workers,
)
):
if print_progress:
progress.update(1)
text = out["text"]
if batch_size in [0, 1, None]:
text = text[0]
segments.append(
{
"text": text,
"start": round(vad_segments[idx]["start"], 3),
"end": round(vad_segments[idx]["end"], 3),
"speaker": vad_segments[idx].get("speaker", None),
}
)
# revert the tokenizer if multilingual inference is enabled
if self.preset_language is None:
self.tokenizer = None
# revert suppressed tokens if suppress_numerals is enabled
if self.suppress_numerals:
self.options = self.options._replace(
suppress_tokens=previous_suppress_tokens
)
return {"segments": segments, "language": language}
def load_asr_model(
whisper_arch: str,
device: str,
device_index: int = 0,
compute_type: str = "float16",
asr_options: Optional[dict] = None,
language: Optional[str] = None,
vad_model=None,
vad_options=None,
model: Optional[WhisperModel] = None,
task: str = "transcribe",
download_root: Optional[str] = None,
threads: int = 4,
) -> VadFreeFasterWhisperPipeline:
"""
Load a Whisper model for inference.
Args:
whisper_arch (str): The name of the Whisper model to load.
device (str): The device to load the model on.
device_index (int, optional): The device index. Defaults to 0.
compute_type (str, optional): The compute type to use for the model. Defaults to "float16".
asr_options (Optional[dict], optional): Options for ASR. Defaults to None.
language (Optional[str], optional): The language of the model. Defaults to None.
vad_model: The VAD model instance. Defaults to None.
vad_options: Options for VAD. Defaults to None.
model (Optional[WhisperModel], optional): The WhisperModel instance to use. Defaults to None.
task (str, optional): The task type ('transcribe' or 'translate'). Defaults to "transcribe".
download_root (Optional[str], optional): The root directory to download the model to. Defaults to None.
threads (int, optional): The number of CPU threads to use per worker. Defaults to 4.
Returns:
VadFreeFasterWhisperPipeline: The loaded Whisper pipeline.
Raises:
ValueError: If the whisper architecture is not recognized.
"""
if whisper_arch.endswith(".en"):
language = "en"
model = model or WhisperModel(
whisper_arch,
device=device,
device_index=device_index,
compute_type=compute_type,
download_root=download_root,
cpu_threads=threads,
)
if language is not None:
tokenizer = faster_whisper.tokenizer.Tokenizer(
model.hf_tokenizer,
model.model.is_multilingual,
task=task,
language=language,
)
else:
print(
"No language specified, language will be detected for each audio file (increases inference time)."
)
tokenizer = None
default_asr_options = {
"beam_size": 5,
"best_of": 5,
"patience": 1,
"length_penalty": 1,
"repetition_penalty": 1,
"no_repeat_ngram_size": 0,
"temperatures": [0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
"compression_ratio_threshold": 2.4,
"log_prob_threshold": -1.0,
"no_speech_threshold": 0.6,
"condition_on_previous_text": False,
"prompt_reset_on_temperature": 0.5,
"initial_prompt": None,
"prefix": None,
"suppress_blank": True,
"suppress_tokens": [-1],
"without_timestamps": True,
"max_initial_timestamp": 0.0,
"word_timestamps": False,
"prepend_punctuations": "\"'“¿([{-",
"append_punctuations": "\"'.。,,!!??::”)]}、",
"suppress_numerals": False,
"max_new_tokens": None,
"clip_timestamps": None,
"hallucination_silence_threshold": None,
}
if asr_options is not None:
default_asr_options.update(asr_options)
suppress_numerals = default_asr_options["suppress_numerals"]
del default_asr_options["suppress_numerals"]
default_asr_options = faster_whisper.transcribe.TranscriptionOptions(
**default_asr_options
)
return VadFreeFasterWhisperPipeline(
model=model,
options=default_asr_options,
tokenizer=tokenizer,
language=language,
suppress_numerals=suppress_numerals,
)
|