Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import json | |
import os | |
from collections import defaultdict | |
from tqdm import tqdm | |
def get_uids_and_wav_paths(cfg, dataset, dataset_type): | |
assert dataset == "bigdata" | |
dataset_dir = os.path.join( | |
cfg.OUTPUT_PATH, | |
"preprocess/{}_version".format(cfg.PREPROCESS_VERSION), | |
"bigdata/{}".format(cfg.BIGDATA_VERSION), | |
) | |
dataset_file = os.path.join( | |
dataset_dir, "{}.json".format(dataset_type.split("_")[-1]) | |
) | |
with open(dataset_file, "r") as f: | |
utterances = json.load(f) | |
# Uids | |
uids = [u["Uid"] for u in utterances] | |
# Wav paths | |
wav_paths = [u["Path"] for u in utterances] | |
return uids, wav_paths | |
def take_duration(utt): | |
return utt["Duration"] | |
def main(output_path, cfg): | |
datasets = cfg.dataset | |
print("-" * 10) | |
print("Preparing samples for bigdata...") | |
print("Including: \n{}\n".format("\n".join(datasets))) | |
datasets.sort() | |
bigdata_version = "_".join(datasets) | |
save_dir = os.path.join(output_path, bigdata_version) | |
os.makedirs(save_dir, exist_ok=True) | |
train_output_file = os.path.join(save_dir, "train.json") | |
test_output_file = os.path.join(save_dir, "test.json") | |
singer_dict_file = os.path.join(save_dir, cfg.preprocess.spk2id) | |
utt2singer_file = os.path.join(save_dir, cfg.preprocess.utt2spk) | |
utt2singer = open(utt2singer_file, "a+") | |
# We select songs of standard samples as test songs | |
train = [] | |
test = [] | |
train_total_duration = 0 | |
test_total_duration = 0 | |
# Singer unique names | |
singer_names = set() | |
for dataset in datasets: | |
dataset_path = os.path.join(output_path, dataset) | |
train_json = os.path.join(dataset_path, "train.json") | |
test_json = os.path.join(dataset_path, "test.json") | |
with open(train_json, "r", encoding="utf-8") as f: | |
train_utterances = json.load(f) | |
with open(test_json, "r", encoding="utf-8") as f: | |
test_utterances = json.load(f) | |
for utt in tqdm(train_utterances): | |
train.append(utt) | |
train_total_duration += utt["Duration"] | |
singer_names.add("{}_{}".format(utt["Dataset"], utt["Singer"])) | |
utt2singer.write( | |
"{}_{}\t{}_{}\n".format( | |
utt["Dataset"], utt["Uid"], utt["Dataset"], utt["Singer"] | |
) | |
) | |
for utt in test_utterances: | |
test.append(utt) | |
test_total_duration += utt["Duration"] | |
singer_names.add("{}_{}".format(utt["Dataset"], utt["Singer"])) | |
utt2singer.write( | |
"{}_{}\t{}_{}\n".format( | |
utt["Dataset"], utt["Uid"], utt["Dataset"], utt["Singer"] | |
) | |
) | |
utt2singer.close() | |
train.sort(key=take_duration) | |
test.sort(key=take_duration) | |
print("#Train = {}, #Test = {}".format(len(train), len(test))) | |
print( | |
"#Train hours= {}, #Test hours= {}".format( | |
train_total_duration / 3600, test_total_duration / 3600 | |
) | |
) | |
# Singer Look Up Table | |
singer_names = list(singer_names) | |
singer_names.sort() | |
singer_lut = {name: i for i, name in enumerate(singer_names)} | |
print("#Singers: {}\n".format(len(singer_lut))) | |
# Save | |
with open(train_output_file, "w") as f: | |
json.dump(train, f, indent=4, ensure_ascii=False) | |
with open(test_output_file, "w") as f: | |
json.dump(test, f, indent=4, ensure_ascii=False) | |
with open(singer_dict_file, "w") as f: | |
json.dump(singer_lut, f, indent=4, ensure_ascii=False) | |
# Save meta info | |
meta_info = { | |
"datasets": datasets, | |
"train": {"size": len(train), "hours": round(train_total_duration / 3600, 4)}, | |
"test": {"size": len(test), "hours": round(test_total_duration / 3600, 4)}, | |
"singers": {"size": len(singer_lut)}, | |
} | |
singer2mins = defaultdict(float) | |
for utt in train: | |
dataset, singer, duration = utt["Dataset"], utt["Singer"], utt["Duration"] | |
singer2mins["{}_{}".format(dataset, singer)] += duration / 60 | |
singer2mins = sorted(singer2mins.items(), key=lambda x: x[1], reverse=True) | |
singer2mins = dict( | |
zip([i[0] for i in singer2mins], [round(i[1], 2) for i in singer2mins]) | |
) | |
meta_info["singers"]["training_minutes"] = singer2mins | |
with open(os.path.join(save_dir, "meta_info.json"), "w") as f: | |
json.dump(meta_info, f, indent=4, ensure_ascii=False) | |
for singer, min in singer2mins.items(): | |
print("Singer {}: {} mins".format(singer, min)) | |
print("-" * 10, "\n") | |