Hecheng0625's picture
Upload 409 files
c968fc3 verified
raw
history blame
13.6 kB
# Copyright (c) 2024 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from torch.nn.utils import weight_norm
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
def l2norm(t):
return F.normalize(t, p=2, dim=-1)
def ema_inplace(moving_avg, new, decay):
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
def laplace_smoothing(x, n_categories, eps=1e-5):
return (x + eps) / (x.sum() + n_categories * eps)
def sample_vectors(samples, num):
num_samples, device = samples.shape[0], samples.device
if num_samples >= num:
indices = torch.randperm(num_samples, device=device)[:num]
else:
indices = torch.randint(0, num_samples, (num,), device=device)
return samples[indices]
def kmeans(samples, num_clusters, num_iters=10, use_cosine_sim=False):
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device
means = sample_vectors(samples, num_clusters)
for _ in range(num_iters):
if use_cosine_sim:
dists = samples @ means.t()
else:
diffs = rearrange(samples, "n d -> n () d") - rearrange(
means, "c d -> () c d"
)
dists = -(diffs**2).sum(dim=-1)
buckets = dists.max(dim=-1).indices
bins = torch.bincount(buckets, minlength=num_clusters)
zero_mask = bins == 0
bins_min_clamped = bins.masked_fill(zero_mask, 1)
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
new_means = new_means / bins_min_clamped[..., None]
if use_cosine_sim:
new_means = l2norm(new_means)
means = torch.where(zero_mask[..., None], means, new_means)
return means, bins
class EuclideanCodebook(nn.Module):
def __init__(
self,
dim,
codebook_size,
kmeans_init=False,
kmeans_iters=10,
decay=0.8,
eps=1e-5,
threshold_ema_dead_code=2,
weight_init=False,
):
super().__init__()
self.decay = decay
init_fn = torch.randn if not weight_init else torch.zeros
embed = init_fn(codebook_size, dim)
if weight_init:
nn.init.uniform_(embed, -1 / codebook_size, 1 / codebook_size)
self.codebook_size = codebook_size
self.kmeans_iters = kmeans_iters
self.eps = eps
self.threshold_ema_dead_code = threshold_ema_dead_code
self.register_buffer(
"initted", torch.Tensor([not kmeans_init])
) # if kmeans_init is True, then initted is False; otherwise, initted is True
self.register_buffer("cluster_size", torch.zeros(codebook_size))
self.register_buffer("embed", embed)
self.register_buffer("embed_avg", embed.clone())
def init_embed_(self, data):
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
self.embed.data.copy_(embed)
self.embed_avg.data.copy_(embed)
self.cluster_size.data.copy_(cluster_size)
self.initted.data.copy_(torch.Tensor([True]))
def replace(self, samples, mask):
modified_codebook = torch.where(
mask[..., None], sample_vectors(samples, self.codebook_size), self.embed
)
self.embed.data.copy_(modified_codebook)
def expire_codes_(self, batch_samples):
if self.threshold_ema_dead_code == 0:
return
expired_codes = self.cluster_size < self.threshold_ema_dead_code
if not torch.any(expired_codes):
return
batch_samples = rearrange(batch_samples, "... d -> (...) d")
self.replace(batch_samples, mask=expired_codes)
def forward(self, x):
shape, dtype = x.shape, x.dtype
flatten = rearrange(x, "... d -> (...) d")
embed = self.embed.t() # (codebook_size, dim) -> (dim, codebook_size)
if not self.initted:
self.init_embed_(flatten)
dist = -(
flatten.pow(2).sum(1, keepdim=True)
- 2 * flatten @ embed
+ embed.pow(2).sum(0, keepdim=True)
)
embed_ind = dist.max(dim=-1).indices
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
embed_ind = embed_ind.view(*shape[:-1])
quantize = F.embedding(embed_ind, self.embed)
if self.training:
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
embed_sum = (
flatten.t() @ embed_onehot
) # (dim, ...) @ (..., codebook_size) -> (dim, codebook_size)
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
cluster_size = (
laplace_smoothing(self.cluster_size, self.codebook_size, self.eps)
* self.cluster_size.sum()
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
self.embed.data.copy_(embed_normalized)
self.expire_codes_(x)
return quantize, embed_ind
def vq2emb(self, vq):
quantize = F.embedding(vq, self.embed)
return quantize
def latent2dist(self, x):
shape, dtype = x.shape, x.dtype
flatten = rearrange(x, "... d -> (...) d")
embed = self.embed.t() # (codebook_size, dim) -> (dim, codebook_size)
if not self.initted:
self.init_embed_(flatten)
dist = -(
flatten.pow(2).sum(1, keepdim=True)
- 2 * flatten @ embed
+ embed.pow(2).sum(0, keepdim=True)
)
embed_ind = dist.max(dim=-1).indices
embed_ind = embed_ind.view(*shape[:-1])
quantize = F.embedding(embed_ind, self.embed)
dist = dist.view(*shape[:-1], -1)
return dist, embed_ind, quantize
class SimpleCodebook(nn.Module):
def __init__(
self,
dim,
codebook_size,
use_l2_normlize=False,
):
super().__init__()
self.dim = dim
self.codebook_size = codebook_size
self.use_l2_normlize = use_l2_normlize
self.embed = nn.Embedding(self.codebook_size, self.dim)
def forward(self, x):
shape, dtype = x.shape, x.dtype
flatten = rearrange(x, "... d -> (...) d")
embed = self.embed.weight.t() # (codebook_size, dim) -> (dim, codebook_size)
if self.use_l2_normlize:
flatten = F.normalize(flatten)
embed = F.normalize(embed)
dist = -(
flatten.pow(2).sum(1, keepdim=True)
- 2 * flatten @ embed
+ embed.pow(2).sum(0, keepdim=True)
)
embed_ind = dist.max(dim=-1).indices
embed_ind = embed_ind.view(*shape[:-1])
quantize = F.embedding(embed_ind, self.embed)
return quantize, embed_ind
def vq2emb(self, vq):
quantize = F.embedding(vq, self.embed.weight)
return quantize
def latent2dist(self, x):
shape, dtype = x.shape, x.dtype
flatten = rearrange(x, "... d -> (...) d")
embed = self.embed.weight.t() # (codebook_size, dim) -> (dim, codebook_size)
if self.use_l2_normlize:
flatten = F.normalize(flatten)
embed = F.normalize(embed)
dist = -(
flatten.pow(2).sum(1, keepdim=True)
- 2 * flatten @ embed
+ embed.pow(2).sum(0, keepdim=True)
)
embed_ind = dist.max(dim=-1).indices
embed_ind = embed_ind.view(*shape[:-1])
quantize = F.embedding(embed_ind, self.embed)
dist = dist.view(*shape[:-1], -1)
return dist, embed_ind, quantize
class VectorQuantize(nn.Module):
"""Vector quantization and factorized vecotor quantization implementation
Args:
input_dim (int): Dimension of input.
codebook_size (int): Codebook size.
codebook_dim (int): Codebook dimension. We suggest use codebook_dim = input_dim
if use codebook_type == "euclidean", otherwise, if you want to use
factorized vector quantization, use codebook_dim as small number (e.g. 8 or 32).
commitment (float): Weight for commitment loss.
use_l2_normlize (bool): Whether to use l2 normlized codes for factorized vecotor quantization,
we suggest use it as True if you want to use factorized vector quantization
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
kmeans_iters (int): Number of iterations used for kmeans initialization.
decay (float): Decay for exponential moving average over the codebooks.
epsilon (float): Epsilon value for numerical stability.
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
that have an exponential moving average cluster size less than the specified threshold with
randomly selected vector from the current batch.
"""
def __init__(
self,
input_dim,
codebook_size,
codebook_dim,
commitment=0.005,
codebook_loss_weight=1.0,
use_l2_normlize=False,
codebook_type="euclidean", # "euclidean" or "simple"
kmeans_init=False,
kmeans_iters=10,
decay=0.8,
eps=1e-5,
threshold_ema_dead_code=2,
weight_init=False,
):
super().__init__()
self.input_dim = input_dim
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.commitment = commitment
self.codebook_loss_weight = codebook_loss_weight
self.use_l2_normlize = use_l2_normlize
self.codebook_type = codebook_type
self.kmeans_init = kmeans_init
self.kmeans_iters = kmeans_iters
self.decay = decay
self.eps = eps
self.threshold_ema_dead_code = threshold_ema_dead_code
self.weight_init = weight_init
if self.input_dim != self.codebook_dim:
self.in_project = WNConv1d(self.input_dim, self.codebook_dim, kernel_size=1)
self.out_project = WNConv1d(
self.codebook_dim, self.input_dim, kernel_size=1
)
else:
self.in_project = nn.Identity()
self.out_project = nn.Identity()
if self.codebook_type == "euclidean":
self.codebook = EuclideanCodebook(
self.codebook_dim,
codebook_size=self.codebook_size,
kmeans_init=self.kmeans_init,
kmeans_iters=self.kmeans_iters,
decay=self.decay,
eps=self.eps,
threshold_ema_dead_code=self.threshold_ema_dead_code,
weight_init=self.weight_init,
)
elif self.codebook_type == "simple":
self.codebook = SimpleCodebook(
self.codebook_dim,
codebook_size=self.codebook_size,
use_l2_normlize=self.use_l2_normlize,
)
else:
raise NotImplementedError(
f"codebook_type {self.codebook_type} is not implemented!"
)
def forward(self, z):
"""
Parameters
----------
z: torch.Tensor[B x D x T]
Returns
-------
z_q: torch.Tensor[B x D x T]
Quantized continuous representation of input
commit_loss: Tensor[B]
Commitment loss to train encoder to predict vectors closer to codebook entries
codebook_loss: Tensor[B]
Codebook loss to update the codebook
indices: torch.Tensor[B x T]
Codebook indices (quantized discrete representation of input)
z_e: torch.Tensor[B x D x T]
Projected latents (continuous representation of input before quantization)
"""
# Factorized codes project input into low-dimensional space if self.input_dim != self.codebook_dim
z_e = self.in_project(z)
z_q, indices = self.decode_latents(z_e)
# Compute commitment loss and codebook loss
if self.training:
commit_loss = (
F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2])
* self.commitment
)
codebook_loss = (
F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2])
* self.codebook_loss_weight
)
else:
commit_loss = torch.zeros(z.shape[0], device=z.device)
codebook_loss = torch.zeros(z.shape[0], device=z.device)
z_q = z_e + (z_q - z_e).detach()
z_q = self.out_project(z_q)
return z_q, commit_loss, codebook_loss, indices, z_e
def decode_latents(self, latents):
encodings = rearrange(latents, "b d t -> b t d")
z_q, indices = self.codebook(encodings)
z_q = z_q.transpose(1, 2)
return z_q, indices
def vq2emb(self, vq, out_proj=True):
emb = self.codebook.vq2emb(vq)
emb = emb.transpose(1, 2)
if out_proj:
emb = self.out_project(emb)
return emb
def latent2dist(self, latents):
latents = rearrange(latents, "b d t -> b t d")
dist, embed_ind, quantize = self.codebook.latent2dist(latents)
return dist, embed_ind, quantize.transpose(1, 2)