Hecheng0625's picture
Upload 409 files
c968fc3 verified
raw
history blame
24 kB
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
from typing import Union
import math
import warnings
import torch
from torch.optim.lr_scheduler import _LRScheduler
class WarmupLR(_LRScheduler):
"""The WarmupLR scheduler
This scheduler is almost same as NoamLR Scheduler except for following
difference:
NoamLR:
lr = optimizer.lr * model_size ** -0.5
* min(step ** -0.5, step * warmup_step ** -1.5)
WarmupLR:
lr = optimizer.lr * warmup_step ** 0.5
* min(step ** -0.5, step * warmup_step ** -1.5)
Note that the maximum lr equals to optimizer.lr in this scheduler.
"""
def __init__(
self,
optimizer: torch.optim.Optimizer,
warmup_steps: Union[int, float] = 25000,
last_epoch: int = -1,
):
self.warmup_steps = warmup_steps
# __init__() must be invoked before setting field
# because step() is also invoked in __init__()
super().__init__(optimizer, last_epoch)
def __repr__(self):
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})"
def get_lr(self):
step_num = self.last_epoch + 1
if self.warmup_steps == 0:
return [lr * step_num**-0.5 for lr in self.base_lrs]
else:
return [
lr
* self.warmup_steps**0.5
* min(step_num**-0.5, step_num * self.warmup_steps**-1.5)
for lr in self.base_lrs
]
def set_step(self, step: int):
self.last_epoch = step
class WarmupPolicy(_LRScheduler):
"""Adds warmup kwargs and warmup logic to lr policy.
All arguments should be passed as kwargs for clarity,
Args:
warmup_steps: Number of training steps in warmup stage
warmup_ratio: Ratio of warmup steps to total steps
max_steps: Total number of steps while training or `None` for
infinite training
"""
def __init__(
self,
optimizer,
*,
warmup_steps=None,
warmup_ratio=None,
max_steps=None,
min_lr=0.0,
last_epoch=-1,
):
assert not (
warmup_steps is not None and warmup_ratio is not None
), "Either use particular number of step or ratio"
assert (
warmup_ratio is None or max_steps is not None
), "If there is a ratio, there should be a total steps"
# It is necessary to assign all attributes *before* __init__,
# as class is wrapped by an inner class.
self.max_steps = max_steps
if warmup_steps is not None:
self.warmup_steps = warmup_steps
elif warmup_ratio is not None:
self.warmup_steps = int(warmup_ratio * max_steps)
else:
self.warmup_steps = 0
self.min_lr = min_lr
super().__init__(optimizer, last_epoch)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed "
"by the scheduler, please use `get_last_lr()`.",
UserWarning,
stacklevel=2,
)
step = self.last_epoch
if step <= self.warmup_steps and self.warmup_steps > 0:
return self._get_warmup_lr(step)
if step > self.max_steps:
return [self.min_lr for _ in self.base_lrs]
return self._get_lr(step)
def _get_warmup_lr(self, step):
lr_val = (step + 1) / (self.warmup_steps + 1)
return [initial_lr * lr_val for initial_lr in self.base_lrs]
def _get_lr(self, step):
"""Simple const lr policy"""
return self.base_lrs
class SquareRootConstantPolicy(_LRScheduler):
"""Adds warmup kwargs and warmup logic to lr policy.
All arguments should be passed as kwargs for clarity,
Args:
warmup_steps: Number of training steps in warmup stage
warmup_ratio: Ratio of warmup steps to total steps
max_steps: Total number of steps while training or `None` for
infinite training
"""
def __init__(
self,
optimizer,
*,
constant_steps=None,
constant_ratio=None,
max_steps=None,
min_lr=0.0,
last_epoch=-1,
):
assert not (
constant_steps is not None and constant_ratio is not None
), "Either use particular number of step or ratio"
assert (
constant_ratio is None or max_steps is not None
), "If there is a ratio, there should be a total steps"
# It is necessary to assign all attributes *before* __init__,
# as class is wrapped by an inner class.
self.max_steps = max_steps
if constant_steps is not None:
self.constant_steps = constant_steps
elif constant_ratio is not None:
self.constant_steps = int(constant_ratio * max_steps)
else:
self.constant_steps = 0
self.constant_lr = 1 / (constant_steps**0.5)
self.min_lr = min_lr
super().__init__(optimizer, last_epoch)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed "
"by the scheduler, please use `get_last_lr()`.",
UserWarning,
stacklevel=2,
)
step = self.last_epoch
if step <= self.constant_steps:
return [self.constant_lr for _ in self.base_lrs]
if step > self.max_steps:
return [self.min_lr for _ in self.base_lrs]
return self._get_lr(step)
def _get_lr(self, step):
"""Simple const lr policy"""
return self.base_lrs
class WarmupHoldPolicy(WarmupPolicy):
"""Variant of WarmupPolicy which maintains high
learning rate for a defined number of steps.
All arguments should be passed as kwargs for clarity,
Args:
warmup_steps: Number of training steps in warmup stage
warmup_ratio: Ratio of warmup steps to total steps
hold_steps: Number of training steps to
hold the learning rate after warm up
hold_ratio: Ratio of hold steps to total steps
max_steps: Total number of steps while training or `None` for
infinite training
"""
def __init__(
self,
optimizer,
*,
warmup_steps=None,
warmup_ratio=None,
hold_steps=None,
hold_ratio=None,
max_steps=None,
min_lr=0.0,
last_epoch=-1,
):
assert not (
hold_steps is not None and hold_ratio is not None
), "Either use particular number of step or ratio"
assert (
hold_ratio is None or max_steps is not None
), "If there is a ratio, there should be a total steps"
self.min_lr = min_lr
self._last_warmup_lr = 0.0
# Necessary to duplicate as class attributes are hidden in inner class
self.max_steps = max_steps
if warmup_steps is not None:
self.warmup_steps = warmup_steps
elif warmup_ratio is not None:
self.warmup_steps = int(warmup_ratio * max_steps)
else:
self.warmup_steps = 0
if hold_steps is not None:
self.hold_steps = hold_steps + self.warmup_steps
elif hold_ratio is not None:
self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps
else:
self.hold_steps = 0
super().__init__(
optimizer,
warmup_steps=warmup_steps,
warmup_ratio=warmup_ratio,
max_steps=max_steps,
last_epoch=last_epoch,
min_lr=min_lr,
)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed by the scheduler,"
" "
"please use `get_last_lr()`.",
UserWarning,
stacklevel=2,
)
step = self.last_epoch
# Warmup phase
if step <= self.warmup_steps and self.warmup_steps > 0:
return self._get_warmup_lr(step)
# Hold phase
if (step >= self.warmup_steps) and (step < self.hold_steps):
return self.base_lrs
if step > self.max_steps:
return [self.min_lr for _ in self.base_lrs]
return self._get_lr(step)
class WarmupAnnealHoldPolicy(_LRScheduler):
"""Adds warmup kwargs and warmup logic to lr policy.
All arguments should be passed as kwargs for clarity,
Args:
warmup_steps: Number of training steps in warmup stage
warmup_ratio: Ratio of warmup steps to total steps
max_steps: Total number of steps while training or `None` for
infinite training
min_lr: Minimum lr to hold the learning rate after decay at.
constant_steps: Number of steps to keep lr constant at.
constant_ratio: Ratio of steps to keep lr constant.
"""
def __init__(
self,
optimizer,
*,
warmup_steps=None,
warmup_ratio=None,
constant_steps=None,
constant_ratio=None,
max_steps=None,
min_lr=0.0,
last_epoch=-1,
):
assert not (
warmup_steps is not None and warmup_ratio is not None
), "Either use particular number of step or ratio"
assert not (
constant_steps is not None and constant_ratio is not None
), "Either use constant_steps or constant_ratio"
assert (
warmup_ratio is None or max_steps is not None
), "If there is a ratio, there should be a total steps"
# It is necessary to assign all attributes *before* __init__,
# as class is wrapped by an inner class.
self.max_steps = max_steps
if warmup_steps is not None:
self.warmup_steps = warmup_steps
elif warmup_ratio is not None:
self.warmup_steps = int(warmup_ratio * max_steps)
else:
self.warmup_steps = 0
if constant_steps is not None:
self.constant_steps = constant_steps
elif constant_ratio is not None:
self.constant_steps = int(constant_ratio * max_steps)
else:
self.constant_steps = 0
self.decay_steps = max_steps - (self.constant_steps + self.warmup_steps)
self.min_lr = min_lr
super().__init__(optimizer, last_epoch)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed "
"by the scheduler, please use `get_last_lr()`.",
UserWarning,
stacklevel=2,
)
step = self.last_epoch
# Warmup steps
if self.warmup_steps > 0 and step <= self.warmup_steps:
return self._get_warmup_lr(step)
# Constant steps after warmup and decay
if (
self.constant_steps > 0
and (self.warmup_steps + self.decay_steps) < step <= self.max_steps
):
return self._get_constant_lr(step)
# Min lr after max steps of updates
if step > self.max_steps:
return [self.min_lr for _ in self.base_lrs]
return self._get_lr(step)
def _get_warmup_lr(self, step):
lr_val = (step + 1) / (self.warmup_steps + 1)
return [initial_lr * lr_val for initial_lr in self.base_lrs]
def _get_constant_lr(self, step):
return [self.min_lr for _ in self.base_lrs]
def _get_lr(self, step):
"""Simple const lr policy"""
return self.base_lrs
def _squareroot_annealing(initial_lr, step, max_steps, min_lr):
mult = ((max_steps - step) / max_steps) ** 0.5
out_lr = initial_lr * mult
out_lr = max(out_lr, min_lr)
return out_lr
def _square_annealing(initial_lr, step, max_steps, min_lr):
mult = ((max_steps - step) / max_steps) ** 2
out_lr = initial_lr * mult
out_lr = max(out_lr, min_lr)
return out_lr
def _cosine_annealing(initial_lr, step, max_steps, min_lr):
mult = 0.5 * (1 + math.cos(math.pi * step / max_steps))
out_lr = (initial_lr - min_lr) * mult + min_lr
return out_lr
def _linear_warmup_with_cosine_annealing(
max_lr, warmup_steps, step, decay_steps, min_lr
):
assert max_lr > min_lr
# Use linear warmup for the initial part.
if warmup_steps > 0 and step <= warmup_steps:
return max_lr * float(step) / float(warmup_steps)
# For any steps larger than `decay_steps`, use `min_lr`.
if step > warmup_steps + decay_steps:
return min_lr
# If we are done with the warmup period, use the decay style.
num_steps_ = step - warmup_steps
decay_steps_ = decay_steps
decay_ratio = float(num_steps_) / float(decay_steps_)
assert decay_ratio >= 0.0
assert decay_ratio <= 1.0
delta_lr = max_lr - min_lr
coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
return min_lr + coeff * delta_lr
def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle):
if cycle:
multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps)
decay_steps *= multiplier
else:
step = min(step, decay_steps)
p = step / decay_steps
lr = (initial_lr - min_lr) * math.pow(1.0 - p, power)
lr += min_lr
return lr
def _noam_hold_annealing(
initial_lr, step, warmup_steps, hold_steps, decay_rate, min_lr
):
# hold_steps = total number of steps
# to hold the LR, not the warmup + hold steps.
T_warmup_decay = max(1, warmup_steps**decay_rate)
T_hold_decay = max(1, (step - hold_steps) ** decay_rate)
lr = (initial_lr * T_warmup_decay) / T_hold_decay
lr = max(lr, min_lr)
return lr
class SquareAnnealing(WarmupPolicy):
def __init__(self, optimizer, *, max_steps, min_lr=1e-5, last_epoch=-1, **kwargs):
super().__init__(
optimizer=optimizer,
max_steps=max_steps,
last_epoch=last_epoch,
min_lr=min_lr,
**kwargs,
)
def _get_lr(self, step):
new_lrs = [
_square_annealing(
initial_lr=initial_lr,
step=step - self.warmup_steps,
max_steps=self.max_steps - self.warmup_steps,
min_lr=self.min_lr,
)
for initial_lr in self.base_lrs
]
return new_lrs
class SquareRootAnnealing(WarmupPolicy):
def __init__(self, optimizer, *, max_steps, min_lr=0, last_epoch=-1, **kwargs):
super().__init__(
optimizer=optimizer,
max_steps=max_steps,
last_epoch=last_epoch,
min_lr=min_lr,
**kwargs,
)
def _get_lr(self, step):
new_lrs = [
_squareroot_annealing(
initial_lr=initial_lr,
step=step,
max_steps=self.max_steps,
min_lr=self.min_lr,
)
for initial_lr in self.base_lrs
]
return new_lrs
class CosineAnnealing(WarmupAnnealHoldPolicy):
def __init__(self, optimizer, *, max_steps, min_lr=0, last_epoch=-1, **kwargs):
super().__init__(
optimizer=optimizer,
max_steps=max_steps,
last_epoch=last_epoch,
min_lr=min_lr,
**kwargs,
)
def _get_lr(self, step):
for initial_lr in self.base_lrs:
if initial_lr < self.min_lr:
raise ValueError(
f"{self} received an initial learning rate "
f"that was lower than the minimum learning rate."
)
if self.constant_steps is None or self.constant_steps == 0:
new_lrs = [
_cosine_annealing(
initial_lr=initial_lr,
step=step - self.warmup_steps,
max_steps=self.max_steps - self.warmup_steps,
min_lr=self.min_lr,
)
for initial_lr in self.base_lrs
]
else:
new_lrs = self._get_linear_warmup_with_cosine_annealing_lr(step)
return new_lrs
def _get_warmup_lr(self, step):
if self.constant_steps is None or self.constant_steps == 0:
return super()._get_warmup_lr(step)
else:
# Use linear warmup for the initial part.
return self._get_linear_warmup_with_cosine_annealing_lr(step)
def _get_constant_lr(self, step):
# Only called when `constant_steps` > 0.
return self._get_linear_warmup_with_cosine_annealing_lr(step)
def _get_linear_warmup_with_cosine_annealing_lr(self, step):
# Cosine Schedule for Megatron LM,
# slightly different warmup schedule + constant LR at the end.
new_lrs = [
_linear_warmup_with_cosine_annealing(
max_lr=self.base_lrs[0],
warmup_steps=self.warmup_steps,
step=step,
decay_steps=self.decay_steps,
min_lr=self.min_lr,
)
for _ in self.base_lrs
]
return new_lrs
class NoamAnnealing(_LRScheduler):
def __init__(
self,
optimizer,
*,
d_model,
warmup_steps=None,
warmup_ratio=None,
max_steps=None,
min_lr=0.0,
last_epoch=-1,
):
self._normalize = d_model ** (-0.5)
assert not (
warmup_steps is not None and warmup_ratio is not None
), "Either use particular number of step or ratio"
assert (
warmup_ratio is None or max_steps is not None
), "If there is a ratio, there should be a total steps"
# It is necessary to assign all attributes *before* __init__,
# as class is wrapped by an inner class.
self.max_steps = max_steps
if warmup_steps is not None:
self.warmup_steps = warmup_steps
elif warmup_ratio is not None:
self.warmup_steps = int(warmup_ratio * max_steps)
else:
self.warmup_steps = 0
self.min_lr = min_lr
super().__init__(optimizer, last_epoch)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn(
"To get the last learning rate computed "
"by the scheduler, please use `get_last_lr()`.",
UserWarning,
stacklevel=2,
)
step = max(1, self.last_epoch)
for initial_lr in self.base_lrs:
if initial_lr < self.min_lr:
raise ValueError(
f"{self} received an initial learning rate "
f"that was lower than the minimum learning rate."
)
new_lrs = [
self._noam_annealing(initial_lr=initial_lr, step=step)
for initial_lr in self.base_lrs
]
return new_lrs
def _noam_annealing(self, initial_lr, step):
if self.warmup_steps > 0:
mult = self._normalize * min(
step ** (-0.5), step * (self.warmup_steps ** (-1.5))
)
else:
mult = self._normalize * step ** (-0.5)
out_lr = initial_lr * mult
if step > self.warmup_steps:
out_lr = max(out_lr, self.min_lr)
return out_lr
class NoamHoldAnnealing(WarmupHoldPolicy):
def __init__(
self,
optimizer,
*,
max_steps,
decay_rate=0.5,
min_lr=0.0,
last_epoch=-1,
**kwargs,
):
"""
From Nemo:
Implementation of the Noam Hold Annealing policy
from the SqueezeFormer paper.
Unlike NoamAnnealing, the peak learning rate
can be explicitly set for this scheduler.
The schedule first performs linear warmup,
then holds the peak LR, then decays with some schedule for
the remainder of the steps.
Therefore the min-lr is still dependent
on the hyper parameters selected.
It's schedule is determined by three factors-
Warmup Steps: Initial stage, where linear warmup
occurs uptil the peak LR is reached. Unlike NoamAnnealing,
the peak LR is explicitly stated here instead of a scaling factor.
Hold Steps: Intermediate stage, where the peak LR
is maintained for some number of steps. In this region,
the high peak LR allows the model to converge faster
if training is stable. However the high LR
may also cause instability during training.
Should usually be a significant fraction of training
steps (around 30-40% of the entire training steps).
Decay Steps: Final stage, where the LR rapidly decays
with some scaling rate (set by decay rate).
To attain Noam decay, use 0.5,
for Squeezeformer recommended decay, use 1.0.
The fast decay after prolonged high LR during
hold phase allows for rapid convergence.
References:
- [Squeezeformer:
An Efficient Transformer for Automatic Speech Recognition]
(https://arxiv.org/abs/2206.00888)
Args:
optimizer: Pytorch compatible Optimizer object.
warmup_steps: Number of training steps in warmup stage
warmup_ratio: Ratio of warmup steps to total steps
hold_steps: Number of training steps to
hold the learning rate after warm up
hold_ratio: Ratio of hold steps to total steps
max_steps: Total number of steps while training or `None` for
infinite training
decay_rate: Float value describing the polynomial decay
after the hold period. Default value
of 0.5 corresponds to Noam decay.
min_lr: Minimum learning rate.
"""
self.decay_rate = decay_rate
super().__init__(
optimizer=optimizer,
max_steps=max_steps,
last_epoch=last_epoch,
min_lr=min_lr,
**kwargs,
)
def _get_lr(self, step):
if self.warmup_steps is None or self.warmup_steps == 0:
raise ValueError("Noam scheduler cannot be used without warmup steps")
if self.hold_steps > 0:
hold_steps = self.hold_steps - self.warmup_steps
else:
hold_steps = 0
new_lrs = [
_noam_hold_annealing(
initial_lr,
step=step,
warmup_steps=self.warmup_steps,
hold_steps=hold_steps,
decay_rate=self.decay_rate,
min_lr=self.min_lr,
)
for initial_lr in self.base_lrs
]
return new_lrs
def set_step(self, step: int):
self.last_epoch = step