Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from inspect import isfunction | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, einsum | |
from einops import rearrange, repeat | |
class CheckpointFunction(torch.autograd.Function): | |
def forward(ctx, run_function, length, *args): | |
ctx.run_function = run_function | |
ctx.input_tensors = list(args[:length]) | |
ctx.input_params = list(args[length:]) | |
with torch.no_grad(): | |
output_tensors = ctx.run_function(*ctx.input_tensors) | |
return output_tensors | |
def backward(ctx, *output_grads): | |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] | |
with torch.enable_grad(): | |
# Fixes a bug where the first op in run_function modifies the | |
# Tensor storage in place, which is not allowed for detach()'d | |
# Tensors. | |
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] | |
output_tensors = ctx.run_function(*shallow_copies) | |
input_grads = torch.autograd.grad( | |
output_tensors, | |
ctx.input_tensors + ctx.input_params, | |
output_grads, | |
allow_unused=True, | |
) | |
del ctx.input_tensors | |
del ctx.input_params | |
del output_tensors | |
return (None, None) + input_grads | |
def checkpoint(func, inputs, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. | |
:param func: the function to evaluate. | |
:param inputs: the argument sequence to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not | |
explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
if flag: | |
args = tuple(inputs) + tuple(params) | |
return CheckpointFunction.apply(func, len(inputs), *args) | |
else: | |
return func(*inputs) | |
def exists(val): | |
return val is not None | |
def uniq(arr): | |
return {el: True for el in arr}.keys() | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def max_neg_value(t): | |
return -torch.finfo(t.dtype).max | |
def init_(tensor): | |
dim = tensor.shape[-1] | |
std = 1 / math.sqrt(dim) | |
tensor.uniform_(-std, std) | |
return tensor | |
# feedforward | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = ( | |
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) | |
if not glu | |
else GEGLU(dim, inner_dim) | |
) | |
self.net = nn.Sequential( | |
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def Normalize(in_channels): | |
return torch.nn.GroupNorm( | |
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
class LinearAttention(nn.Module): | |
def __init__(self, dim, heads=4, dim_head=32): | |
super().__init__() | |
self.heads = heads | |
hidden_dim = dim_head * heads | |
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False) | |
self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
def forward(self, x): | |
b, c, h, w = x.shape | |
qkv = self.to_qkv(x) | |
q, k, v = rearrange( | |
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3 | |
) | |
k = k.softmax(dim=-1) | |
context = torch.einsum("bhdn,bhen->bhde", k, v) | |
out = torch.einsum("bhde,bhdn->bhen", context, q) | |
out = rearrange( | |
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w | |
) | |
return self.to_out(out) | |
class SpatialSelfAttention(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize(in_channels) | |
self.q = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.k = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.v = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
self.proj_out = torch.nn.Conv2d( | |
in_channels, in_channels, kernel_size=1, stride=1, padding=0 | |
) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q.shape | |
q = rearrange(q, "b c h w -> b (h w) c") | |
k = rearrange(k, "b c h w -> b c (h w)") | |
w_ = torch.einsum("bij,bjk->bik", q, k) | |
w_ = w_ * (int(c) ** (-0.5)) | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = rearrange(v, "b c h w -> b c (h w)") | |
w_ = rearrange(w_, "b i j -> b j i") | |
h_ = torch.einsum("bij,bjk->bik", v, w_) | |
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h) | |
h_ = self.proj_out(h_) | |
return x + h_ | |
class CrossAttention(nn.Module): | |
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): | |
super().__init__() | |
inner_dim = dim_head * heads | |
context_dim = default(context_dim, query_dim) | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | |
) | |
def forward(self, x, context=None, mask=None): | |
h = self.heads | |
q = self.to_q(x) | |
context = default(context, x) | |
k = self.to_k(context) | |
v = self.to_v(context) | |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) | |
sim = einsum("b i d, b j d -> b i j", q, k) * self.scale | |
if exists(mask): | |
mask = rearrange(mask, "b ... -> b (...)") | |
max_neg_value = -torch.finfo(sim.dtype).max | |
mask = repeat(mask, "b j -> (b h) () j", h=h) | |
sim.masked_fill_(~mask, max_neg_value) | |
# attention, what we cannot get enough of | |
attn = sim.softmax(dim=-1) | |
out = einsum("b i j, b j d -> b i d", attn, v) | |
out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | |
return self.to_out(out) | |
class BasicTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
n_heads, | |
d_head, | |
dropout=0.0, | |
context_dim=None, | |
gated_ff=True, | |
checkpoint=True, | |
): | |
super().__init__() | |
self.attn1 = CrossAttention( | |
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout | |
) # is a self-attention | |
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
self.attn2 = CrossAttention( | |
query_dim=dim, | |
context_dim=context_dim, | |
heads=n_heads, | |
dim_head=d_head, | |
dropout=dropout, | |
) # is self-attn if context is none | |
self.norm1 = nn.LayerNorm(dim) | |
self.norm2 = nn.LayerNorm(dim) | |
self.norm3 = nn.LayerNorm(dim) | |
self.checkpoint = checkpoint | |
def forward(self, x, context=None): | |
return checkpoint( | |
self._forward, (x, context), self.parameters(), self.checkpoint | |
) | |
def _forward(self, x, context=None): | |
x = self.attn1(self.norm1(x)) + x | |
x = self.attn2(self.norm2(x), context=context) + x | |
x = self.ff(self.norm3(x)) + x | |
return x | |
class SpatialTransformer(nn.Module): | |
""" | |
Transformer block for image-like data. | |
First, project the input (aka embedding) | |
and reshape to b, t, d. | |
Then apply standard transformer action. | |
Finally, reshape to image | |
""" | |
def __init__( | |
self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
inner_dim = n_heads * d_head | |
self.norm = Normalize(in_channels) | |
self.proj_in = nn.Conv2d( | |
in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim | |
) | |
for d in range(depth) | |
] | |
) | |
self.proj_out = zero_module( | |
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
) | |
def forward(self, x, context=None): | |
# note: if no context is given, cross-attention defaults to self-attention | |
b, c, h, w = x.shape | |
x_in = x | |
x = self.norm(x) | |
x = self.proj_in(x) | |
x = rearrange(x, "b c h w -> b (h w) c") | |
for block in self.transformer_blocks: | |
x = block(x, context=context) | |
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) | |
x = self.proj_out(x) | |
return x + x_in | |