Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from .modeling_llama import LlamaConfig, LlamaForCausalLM, LlamaModel | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
import os | |
import torch.nn as nn | |
class ValleAR(nn.Module): | |
def __init__( | |
self, | |
phone_vocab_size=256, | |
target_vocab_size=1024, | |
hidden_size=1024, | |
intermediate_size=4096, | |
num_hidden_layers=12, | |
num_attention_heads=16, | |
pad_token_id=1281, | |
bos_target_id=1282, | |
eos_target_id=1283, | |
bos_phone_id=1284, | |
eos_phone_id=1285, | |
use_input_embeds=False, | |
emb_dim=256, | |
**kwargs, | |
): | |
super(ValleAR, self).__init__() | |
self.config = LlamaConfig( | |
vocab_size=phone_vocab_size + target_vocab_size + 10, | |
hidden_size=hidden_size, | |
intermediate_size=intermediate_size, | |
num_hidden_layers=num_hidden_layers, | |
num_attention_heads=num_attention_heads, | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_target_id, | |
eos_token_id=eos_target_id, | |
) | |
self.phone_vocab_size = phone_vocab_size | |
self.target_vocab_size = target_vocab_size | |
self.pad_token_id = pad_token_id | |
self.bos_target_id = bos_target_id | |
self.eos_target_id = eos_target_id | |
self.bos_phone_id = bos_phone_id | |
self.eos_phone_id = eos_phone_id | |
self.model = LlamaForCausalLM(self.config) | |
self.use_input_embeds = use_input_embeds | |
# no input embedding is used to provide speaker information | |
if self.use_input_embeds: | |
self.emb_linear = nn.Linear(emb_dim, hidden_size) | |
self.emb_linear.weight.data.normal_(mean=0.0, std=0.01) | |
self.emb_linear.bias.data.zero_() | |
def forward( | |
self, phone_ids, phone_mask, target_ids, target_mask, input_embeds=None | |
): | |
if input_embeds is not None: | |
input_embeds = self.emb_linear(input_embeds) | |
phone_ids, phone_mask, phone_label = self.add_phone_eos_bos_label( | |
phone_ids, | |
phone_mask, | |
self.eos_phone_id, | |
self.bos_phone_id, | |
self.pad_token_id, | |
) | |
target_ids, target_mask, target_label = self.add_target_eos_bos_label( | |
target_ids, | |
target_mask, | |
self.eos_target_id, | |
self.bos_target_id, | |
self.pad_token_id, | |
) | |
input_token_ids = torch.cat([phone_ids, target_ids], dim=-1) | |
attention_mask = torch.cat([phone_mask, target_mask], dim=-1) | |
# breakpoint() | |
if input_embeds is not None: | |
raise NotImplementedError | |
attention_mask = torch.cat( | |
[ | |
torch.ones( | |
(input_embeds.shape[0], input_embeds.shape[1]), | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
), | |
attention_mask, | |
], | |
dim=-1, | |
) | |
labels = torch.cat([phone_label, target_label], dim=-1) | |
if input_embeds is not None: | |
raise NotImplementedError | |
labels = torch.cat( | |
[ | |
-100 | |
* torch.ones( | |
(input_embeds.shape[0], input_embeds.shape[1]), | |
dtype=labels.dtype, | |
device=labels.device, | |
), | |
labels, | |
], | |
dim=-1, | |
) | |
if input_embeds is not None: | |
raise NotImplementedError | |
inputs_embeds = torch.cat( | |
[input_embeds, self.model.model.embed_tokens(input_token_ids)], dim=1 | |
) | |
out = self.model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
labels=labels, | |
return_dict=True, | |
) | |
return out | |
out = self.model( | |
input_token_ids, | |
attention_mask=attention_mask, | |
labels=labels, | |
return_dict=True, | |
) | |
# calcualte top1, top5, top10 accuracy | |
logits = out.logits | |
logits = logits[:, -target_ids.shape[1] :] | |
top1_acc = logits.argmax(-1)[..., :-1] == target_ids[:, 1:] | |
top1_acc = (top1_acc * target_mask[..., :-1]).sum() / target_mask.sum() | |
top5_acc = torch.topk(logits[..., :-1, :], 5, dim=-1)[1] | |
top5_acc = top5_acc == target_ids[:, 1:].unsqueeze(-1) | |
top5_acc = ( | |
top5_acc * target_mask[..., :-1].unsqueeze(-1) | |
).sum() / target_mask.sum() | |
top10_acc = torch.topk(logits[..., :-1, :], 10, dim=-1)[1] | |
top10_acc = top10_acc == target_ids[:, 1:].unsqueeze(-1) | |
top10_acc = ( | |
top10_acc * target_mask[..., :-1].unsqueeze(-1) | |
).sum() / target_mask.sum() | |
out.top1_acc = top1_acc | |
out.top5_acc = top5_acc | |
out.top10_acc = top10_acc | |
return out | |
def add_phone_eos_bos_label( | |
self, phone_ids, phone_mask, phone_eos_id, phone_bos_id, pad_token_id | |
): | |
# phone_ids: [B, T] | |
# phone_mask: [B, T] | |
phone_ids = phone_ids + self.target_vocab_size * phone_mask | |
phone_ids = phone_ids * phone_mask | |
phone_ids = F.pad(phone_ids, (0, 1), value=0) + phone_eos_id * F.pad( | |
1 - phone_mask, (0, 1), value=1 | |
) # make pad token eos token, add eos token at the end | |
phone_mask = F.pad(phone_mask, (1, 0), value=1) # add eos mask | |
phone_ids = phone_ids * phone_mask + pad_token_id * ( | |
1 - phone_mask | |
) # restore pad token ids | |
phone_ids = F.pad(phone_ids, (1, 0), value=phone_bos_id) # add bos token | |
phone_mask = F.pad(phone_mask, (1, 0), value=1) # add bos mask | |
phone_label = -100 * torch.ones_like( | |
phone_ids | |
) # loss for entire phone is not computed (passed to llama) | |
return phone_ids, phone_mask, phone_label | |
def add_target_eos_bos_label( | |
self, target_ids, target_mask, target_eos_id, target_bos_id, pad_token_id | |
): | |
# target_ids: [B, T] | |
# target_mask: [B, T] | |
target_ids = target_ids * target_mask | |
target_ids = F.pad(target_ids, (0, 1), value=0) + target_eos_id * F.pad( | |
1 - target_mask, (0, 1), value=1 | |
) | |
target_mask = F.pad(target_mask, (1, 0), value=1) | |
target_ids = target_ids * target_mask + pad_token_id * (1 - target_mask) | |
target_ids = F.pad(target_ids, (1, 0), value=target_bos_id) | |
target_mask = F.pad(target_mask, (1, 0), value=1) | |
target_label = target_ids * target_mask + (-100) * ( | |
1 - target_mask | |
) # loss for target is computed on unmasked tokens | |
return target_ids, target_mask, target_label | |
def sample_hf( | |
self, | |
phone_ids, # the phones of prompt and target should be concatenated together | |
prompt_ids, | |
inputs_embeds=None, | |
max_length=2000, | |
temperature=1.0, | |
top_k=100, | |
top_p=0.9, | |
repeat_penalty=1.0, | |
num_beams=1, | |
): | |
if inputs_embeds is not None: | |
inputs_embeds = self.emb_linear(inputs_embeds) | |
phone_mask = torch.ones_like(phone_ids) | |
prompt_mask = torch.ones_like(prompt_ids) | |
phone_ids, _, _ = self.add_phone_eos_bos_label( | |
phone_ids, | |
phone_mask, | |
self.eos_phone_id, | |
self.bos_phone_id, | |
self.pad_token_id, | |
) | |
prompt_ids, _, _ = self.add_target_eos_bos_label( | |
prompt_ids, | |
prompt_mask, | |
self.eos_target_id, | |
self.bos_target_id, | |
self.pad_token_id, | |
) | |
prompt_ids = prompt_ids[:, :-1] # remove end token. Make it continue mode | |
input_token_ids = torch.cat([phone_ids, prompt_ids], dim=-1) | |
if inputs_embeds is not None: | |
raise NotImplementedError | |
inputs_embeds = torch.cat( | |
[inputs_embeds, self.model.model.embed_tokens(input_token_ids)], dim=1 | |
) | |
generated_ids = self.model.generate( | |
inputs_embeds=inputs_embeds, | |
do_sample=True, | |
max_length=max_length, | |
pad_token_id=self.pad_token_id, | |
eos_token_id=self.eos_target_id, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=repeat_penalty, | |
) | |
gen_tokens = generated_ids[:, :-1] | |
return gen_tokens | |
input_length = input_token_ids.shape[1] | |
generated_ids = self.model.generate( | |
input_token_ids, | |
do_sample=True, | |
max_length=max_length, | |
pad_token_id=self.pad_token_id, | |
eos_token_id=self.eos_target_id, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=repeat_penalty, | |
num_beams=num_beams, | |
) | |
gen_tokens = generated_ids[:, input_length:-1] | |
return gen_tokens | |
def test(): | |
model = ValleAR() | |
phone_ids = torch.LongTensor([[1, 2, 3, 4, 5, 0], [1, 2, 3, 4, 5, 6]]) | |
phone_mask = torch.LongTensor([[1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0]]) | |
target_ids = torch.LongTensor([765, 234, 123, 234, 123, 599]).expand(2, -1) | |
target_mask = torch.LongTensor([1, 1, 1, 1, 0, 0]).expand(2, -1) | |
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4) | |
for i in range(15): | |
optimizer.zero_grad() | |
out = model( | |
phone_ids=phone_ids, | |
phone_mask=phone_mask, | |
target_ids=target_ids, | |
target_mask=target_mask, | |
) | |
loss = out.loss | |
loss.backward() | |
optimizer.step() | |
print(f"iter={i}, {loss}.") | |
phone_ids = torch.LongTensor([1, 2, 3]).reshape(1, -1) | |
target_ids = torch.LongTensor([765, 234]).reshape(1, -1) | |
sampled = model.sample_hf(phone_ids, target_ids) | |
breakpoint() | |
if __name__ == "__main__": | |
test() | |