Spaces:
Running
on
Zero
Running
on
Zero
# This module is from [WeNet](https://github.com/wenet-e2e/wenet). | |
# ## Citations | |
# ```bibtex | |
# @inproceedings{yao2021wenet, | |
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit}, | |
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin}, | |
# booktitle={Proc. Interspeech}, | |
# year={2021}, | |
# address={Brno, Czech Republic }, | |
# organization={IEEE} | |
# } | |
# @article{zhang2022wenet, | |
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit}, | |
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei}, | |
# journal={arXiv preprint arXiv:2203.15455}, | |
# year={2022} | |
# } | |
# | |
"""Decoder definition.""" | |
from typing import Tuple, List, Optional | |
import torch | |
from modules.wenet_extractor.transformer.attention import MultiHeadedAttention | |
from modules.wenet_extractor.transformer.decoder_layer import DecoderLayer | |
from modules.wenet_extractor.transformer.embedding import PositionalEncoding | |
from modules.wenet_extractor.transformer.embedding import NoPositionalEncoding | |
from modules.wenet_extractor.transformer.positionwise_feed_forward import ( | |
PositionwiseFeedForward, | |
) | |
from modules.wenet_extractor.utils.mask import subsequent_mask, make_pad_mask | |
class TransformerDecoder(torch.nn.Module): | |
"""Base class of Transfomer decoder module. | |
Args: | |
vocab_size: output dim | |
encoder_output_size: dimension of attention | |
attention_heads: the number of heads of multi head attention | |
linear_units: the hidden units number of position-wise feedforward | |
num_blocks: the number of decoder blocks | |
dropout_rate: dropout rate | |
self_attention_dropout_rate: dropout rate for attention | |
input_layer: input layer type | |
use_output_layer: whether to use output layer | |
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding | |
normalize_before: | |
True: use layer_norm before each sub-block of a layer. | |
False: use layer_norm after each sub-block of a layer. | |
src_attention: if false, encoder-decoder cross attention is not | |
applied, such as CIF model | |
""" | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
normalize_before: bool = True, | |
src_attention: bool = True, | |
): | |
super().__init__() | |
attention_dim = encoder_output_size | |
if input_layer == "embed": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Embedding(vocab_size, attention_dim), | |
PositionalEncoding(attention_dim, positional_dropout_rate), | |
) | |
elif input_layer == "none": | |
self.embed = NoPositionalEncoding(attention_dim, positional_dropout_rate) | |
else: | |
raise ValueError(f"only 'embed' is supported: {input_layer}") | |
self.normalize_before = normalize_before | |
self.after_norm = torch.nn.LayerNorm(attention_dim, eps=1e-5) | |
self.use_output_layer = use_output_layer | |
self.output_layer = torch.nn.Linear(attention_dim, vocab_size) | |
self.num_blocks = num_blocks | |
self.decoders = torch.nn.ModuleList( | |
[ | |
DecoderLayer( | |
attention_dim, | |
MultiHeadedAttention( | |
attention_heads, attention_dim, self_attention_dropout_rate | |
), | |
( | |
MultiHeadedAttention( | |
attention_heads, attention_dim, src_attention_dropout_rate | |
) | |
if src_attention | |
else None | |
), | |
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), | |
dropout_rate, | |
normalize_before, | |
) | |
for _ in range(self.num_blocks) | |
] | |
) | |
def forward( | |
self, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor, | |
ys_in_pad: torch.Tensor, | |
ys_in_lens: torch.Tensor, | |
r_ys_in_pad: torch.Tensor = torch.empty(0), | |
reverse_weight: float = 0.0, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Forward decoder. | |
Args: | |
memory: encoded memory, float32 (batch, maxlen_in, feat) | |
memory_mask: encoder memory mask, (batch, 1, maxlen_in) | |
ys_in_pad: padded input token ids, int64 (batch, maxlen_out) | |
ys_in_lens: input lengths of this batch (batch) | |
r_ys_in_pad: not used in transformer decoder, in order to unify api | |
with bidirectional decoder | |
reverse_weight: not used in transformer decoder, in order to unify | |
api with bidirectional decode | |
Returns: | |
(tuple): tuple containing: | |
x: decoded token score before softmax (batch, maxlen_out, | |
vocab_size) if use_output_layer is True, | |
torch.tensor(0.0), in order to unify api with bidirectional decoder | |
olens: (batch, ) | |
""" | |
tgt = ys_in_pad | |
maxlen = tgt.size(1) | |
# tgt_mask: (B, 1, L) | |
tgt_mask = ~make_pad_mask(ys_in_lens, maxlen).unsqueeze(1) | |
tgt_mask = tgt_mask.to(tgt.device) | |
# m: (1, L, L) | |
m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0) | |
# tgt_mask: (B, L, L) | |
tgt_mask = tgt_mask & m | |
x, _ = self.embed(tgt) | |
for layer in self.decoders: | |
x, tgt_mask, memory, memory_mask = layer(x, tgt_mask, memory, memory_mask) | |
if self.normalize_before: | |
x = self.after_norm(x) | |
if self.use_output_layer: | |
x = self.output_layer(x) | |
olens = tgt_mask.sum(1) | |
return x, torch.tensor(0.0), olens | |
def forward_one_step( | |
self, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor, | |
tgt: torch.Tensor, | |
tgt_mask: torch.Tensor, | |
cache: Optional[List[torch.Tensor]] = None, | |
) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
"""Forward one step. | |
This is only used for decoding. | |
Args: | |
memory: encoded memory, float32 (batch, maxlen_in, feat) | |
memory_mask: encoded memory mask, (batch, 1, maxlen_in) | |
tgt: input token ids, int64 (batch, maxlen_out) | |
tgt_mask: input token mask, (batch, maxlen_out) | |
dtype=torch.uint8 in PyTorch 1.2- | |
dtype=torch.bool in PyTorch 1.2+ (include 1.2) | |
cache: cached output list of (batch, max_time_out-1, size) | |
Returns: | |
y, cache: NN output value and cache per `self.decoders`. | |
y.shape` is (batch, maxlen_out, token) | |
""" | |
x, _ = self.embed(tgt) | |
new_cache = [] | |
for i, decoder in enumerate(self.decoders): | |
if cache is None: | |
c = None | |
else: | |
c = cache[i] | |
x, tgt_mask, memory, memory_mask = decoder( | |
x, tgt_mask, memory, memory_mask, cache=c | |
) | |
new_cache.append(x) | |
if self.normalize_before: | |
y = self.after_norm(x[:, -1]) | |
else: | |
y = x[:, -1] | |
if self.use_output_layer: | |
y = torch.log_softmax(self.output_layer(y), dim=-1) | |
return y, new_cache | |
class BiTransformerDecoder(torch.nn.Module): | |
"""Base class of Transfomer decoder module. | |
Args: | |
vocab_size: output dim | |
encoder_output_size: dimension of attention | |
attention_heads: the number of heads of multi head attention | |
linear_units: the hidden units number of position-wise feedforward | |
num_blocks: the number of decoder blocks | |
r_num_blocks: the number of right to left decoder blocks | |
dropout_rate: dropout rate | |
self_attention_dropout_rate: dropout rate for attention | |
input_layer: input layer type | |
use_output_layer: whether to use output layer | |
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding | |
normalize_before: | |
True: use layer_norm before each sub-block of a layer. | |
False: use layer_norm after each sub-block of a layer. | |
""" | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
r_num_blocks: int = 0, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
normalize_before: bool = True, | |
): | |
super().__init__() | |
self.left_decoder = TransformerDecoder( | |
vocab_size, | |
encoder_output_size, | |
attention_heads, | |
linear_units, | |
num_blocks, | |
dropout_rate, | |
positional_dropout_rate, | |
self_attention_dropout_rate, | |
src_attention_dropout_rate, | |
input_layer, | |
use_output_layer, | |
normalize_before, | |
) | |
self.right_decoder = TransformerDecoder( | |
vocab_size, | |
encoder_output_size, | |
attention_heads, | |
linear_units, | |
r_num_blocks, | |
dropout_rate, | |
positional_dropout_rate, | |
self_attention_dropout_rate, | |
src_attention_dropout_rate, | |
input_layer, | |
use_output_layer, | |
normalize_before, | |
) | |
def forward( | |
self, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor, | |
ys_in_pad: torch.Tensor, | |
ys_in_lens: torch.Tensor, | |
r_ys_in_pad: torch.Tensor, | |
reverse_weight: float = 0.0, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Forward decoder. | |
Args: | |
memory: encoded memory, float32 (batch, maxlen_in, feat) | |
memory_mask: encoder memory mask, (batch, 1, maxlen_in) | |
ys_in_pad: padded input token ids, int64 (batch, maxlen_out) | |
ys_in_lens: input lengths of this batch (batch) | |
r_ys_in_pad: padded input token ids, int64 (batch, maxlen_out), | |
used for right to left decoder | |
reverse_weight: used for right to left decoder | |
Returns: | |
(tuple): tuple containing: | |
x: decoded token score before softmax (batch, maxlen_out, | |
vocab_size) if use_output_layer is True, | |
r_x: x: decoded token score (right to left decoder) | |
before softmax (batch, maxlen_out, vocab_size) | |
if use_output_layer is True, | |
olens: (batch, ) | |
""" | |
l_x, _, olens = self.left_decoder(memory, memory_mask, ys_in_pad, ys_in_lens) | |
r_x = torch.tensor(0.0) | |
if reverse_weight > 0.0: | |
r_x, _, olens = self.right_decoder( | |
memory, memory_mask, r_ys_in_pad, ys_in_lens | |
) | |
return l_x, r_x, olens | |
def forward_one_step( | |
self, | |
memory: torch.Tensor, | |
memory_mask: torch.Tensor, | |
tgt: torch.Tensor, | |
tgt_mask: torch.Tensor, | |
cache: Optional[List[torch.Tensor]] = None, | |
) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
"""Forward one step. | |
This is only used for decoding. | |
Args: | |
memory: encoded memory, float32 (batch, maxlen_in, feat) | |
memory_mask: encoded memory mask, (batch, 1, maxlen_in) | |
tgt: input token ids, int64 (batch, maxlen_out) | |
tgt_mask: input token mask, (batch, maxlen_out) | |
dtype=torch.uint8 in PyTorch 1.2- | |
dtype=torch.bool in PyTorch 1.2+ (include 1.2) | |
cache: cached output list of (batch, max_time_out-1, size) | |
Returns: | |
y, cache: NN output value and cache per `self.decoders`. | |
y.shape` is (batch, maxlen_out, token) | |
""" | |
return self.left_decoder.forward_one_step( | |
memory, memory_mask, tgt, tgt_mask, cache | |
) | |