Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
# This code is modified from https://github.com/Po-Hsun-Su/pytorch-ssim | |
import torch | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
from math import exp | |
def gaussian(window_size, sigma): | |
gauss = torch.Tensor( | |
[ | |
exp(-((x - window_size // 2) ** 2) / float(2 * sigma**2)) | |
for x in range(window_size) | |
] | |
) | |
return gauss / gauss.sum() | |
def create_window(window_size, channel): | |
_1D_window = gaussian(window_size, 1.5).unsqueeze(1) | |
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) | |
window = Variable( | |
_2D_window.expand(channel, 1, window_size, window_size).contiguous() | |
) | |
return window | |
def _ssim(img1, img2, window, window_size, channel, size_average=True): | |
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel) | |
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel) | |
mu1_sq = mu1.pow(2) | |
mu2_sq = mu2.pow(2) | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = ( | |
F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq | |
) | |
sigma2_sq = ( | |
F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq | |
) | |
sigma12 = ( | |
F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) | |
- mu1_mu2 | |
) | |
C1 = 0.01**2 | |
C2 = 0.03**2 | |
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ( | |
(mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2) | |
) | |
if size_average: | |
return ssim_map.mean() | |
else: | |
return ssim_map.mean(1) | |
class SSIM(torch.nn.Module): | |
def __init__(self, window_size=11, size_average=True): | |
super(SSIM, self).__init__() | |
self.window_size = window_size | |
self.size_average = size_average | |
self.channel = 1 | |
self.window = create_window(window_size, self.channel) | |
def forward(self, fake, real, bias=6.0): | |
fake = fake[:, None, :, :] + bias # [B, 1, T, n_mels] | |
real = real[:, None, :, :] + bias # [B, 1, T, n_mels] | |
self.window = self.window.to(dtype=fake.dtype, device=fake.device) | |
loss = 1 - _ssim( | |
fake, real, self.window, self.window_size, self.channel, self.size_average | |
) | |
return loss | |