Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import torch | |
from models.tts.fastspeech2.fs2_trainer import FastSpeech2Trainer | |
from models.tts.vits.vits_trainer import VITSTrainer | |
from models.tts.valle.valle_trainer import VALLETrainer | |
from models.tts.naturalspeech2.ns2_trainer import NS2Trainer | |
from models.tts.valle_v2.valle_ar_trainer import ValleARTrainer as VALLE_V2_AR | |
from models.tts.valle_v2.valle_nar_trainer import ValleNARTrainer as VALLE_V2_NAR | |
from models.tts.jets.jets_trainer import JetsTrainer | |
from utils.util import load_config | |
def build_trainer(args, cfg): | |
supported_trainer = { | |
"FastSpeech2": FastSpeech2Trainer, | |
"VITS": VITSTrainer, | |
"VALLE": VALLETrainer, | |
"NaturalSpeech2": NS2Trainer, | |
"VALLE_V2_AR": VALLE_V2_AR, | |
"VALLE_V2_NAR": VALLE_V2_NAR, | |
"Jets": JetsTrainer, | |
} | |
trainer_class = supported_trainer[cfg.model_type] | |
trainer = trainer_class(args, cfg) | |
return trainer | |
def cuda_relevant(deterministic=False): | |
torch.cuda.empty_cache() | |
# TF32 on Ampere and above | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.benchmark = False | |
torch.backends.cudnn.allow_tf32 = True | |
# Deterministic | |
torch.backends.cudnn.deterministic = deterministic | |
torch.backends.cudnn.benchmark = not deterministic | |
torch.use_deterministic_algorithms(deterministic) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--config", | |
default="config.json", | |
help="json files for configurations.", | |
required=True, | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
default=1234, | |
help="random seed", | |
required=False, | |
) | |
parser.add_argument( | |
"--exp_name", | |
type=str, | |
default="exp_name", | |
help="A specific name to note the experiment", | |
required=True, | |
) | |
parser.add_argument( | |
"--resume", action="store_true", help="The model name to restore" | |
) | |
parser.add_argument( | |
"--test", action="store_true", default=False, help="Test the model" | |
) | |
parser.add_argument( | |
"--log_level", default="warning", help="logging level (debug, info, warning)" | |
) | |
parser.add_argument( | |
"--resume_type", | |
type=str, | |
default="resume", | |
help="Resume training or finetuning.", | |
) | |
parser.add_argument( | |
"--checkpoint_path", | |
type=str, | |
default=None, | |
help="Checkpoint for resume training or finetuning.", | |
) | |
parser.add_argument( | |
"--resume_from_ckpt_path", | |
type=str, | |
default="", | |
help="Checkpoint for resume training or finetuning.", | |
) | |
# VALLETrainer.add_arguments(parser) | |
args = parser.parse_args() | |
cfg = load_config(args.config) | |
# Data Augmentation | |
if hasattr(cfg, "preprocess"): | |
if hasattr(cfg.preprocess, "data_augment"): | |
if ( | |
type(cfg.preprocess.data_augment) == list | |
and len(cfg.preprocess.data_augment) > 0 | |
): | |
new_datasets_list = [] | |
for dataset in cfg.preprocess.data_augment: | |
new_datasets = [ | |
( | |
f"{dataset}_pitch_shift" | |
if cfg.preprocess.use_pitch_shift | |
else None | |
), | |
( | |
f"{dataset}_formant_shift" | |
if cfg.preprocess.use_formant_shift | |
else None | |
), | |
( | |
f"{dataset}_equalizer" | |
if cfg.preprocess.use_equalizer | |
else None | |
), | |
( | |
f"{dataset}_time_stretch" | |
if cfg.preprocess.use_time_stretch | |
else None | |
), | |
] | |
new_datasets_list.extend(filter(None, new_datasets)) | |
cfg.dataset.extend(new_datasets_list) | |
print("experiment name: ", args.exp_name) | |
# # CUDA settings | |
cuda_relevant() | |
# Build trainer | |
print(f"Building {cfg.model_type} trainer") | |
trainer = build_trainer(args, cfg) | |
print(f"Start training {cfg.model_type} model") | |
if args.test: | |
trainer.test_loop() | |
else: | |
trainer.train_loop() | |
if __name__ == "__main__": | |
main() | |