Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os, sys | |
import os.path as osp | |
import numpy as np | |
import torch | |
from torch import nn | |
from torch.optim import Optimizer | |
from functools import reduce | |
from torch.optim import AdamW | |
class MultiOptimizer: | |
def __init__(self, optimizers={}, schedulers={}): | |
self.optimizers = optimizers | |
self.schedulers = schedulers | |
self.keys = list(optimizers.keys()) | |
self.param_groups = reduce( | |
lambda x, y: x + y, [v.param_groups for v in self.optimizers.values()] | |
) | |
def state_dict(self): | |
state_dicts = [(key, self.optimizers[key].state_dict()) for key in self.keys] | |
return state_dicts | |
def scheduler_state_dict(self): | |
state_dicts = [(key, self.schedulers[key].state_dict()) for key in self.keys] | |
return state_dicts | |
def load_state_dict(self, state_dict): | |
for key, val in state_dict: | |
try: | |
self.optimizers[key].load_state_dict(val) | |
except: | |
print("Unloaded %s" % key) | |
def load_scheduler_state_dict(self, state_dict): | |
for key, val in state_dict: | |
try: | |
self.schedulers[key].load_state_dict(val) | |
except: | |
print("Unloaded %s" % key) | |
def step(self, key=None, scaler=None): | |
keys = [key] if key is not None else self.keys | |
_ = [self._step(key, scaler) for key in keys] | |
def _step(self, key, scaler=None): | |
if scaler is not None: | |
scaler.step(self.optimizers[key]) | |
scaler.update() | |
else: | |
self.optimizers[key].step() | |
def zero_grad(self, key=None): | |
if key is not None: | |
self.optimizers[key].zero_grad() | |
else: | |
_ = [self.optimizers[key].zero_grad() for key in self.keys] | |
def scheduler(self, *args, key=None): | |
if key is not None: | |
self.schedulers[key].step(*args) | |
else: | |
_ = [self.schedulers[key].step_batch(*args) for key in self.keys] | |
def define_scheduler(optimizer, params): | |
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=params["gamma"]) | |
return scheduler | |
def build_optimizer(model_dict, scheduler_params_dict, lr, type="AdamW"): | |
optim = {} | |
for key, model in model_dict.items(): | |
model_parameters = model.parameters() | |
parameters_names = [] | |
parameters_names.append( | |
[name_param_pair[0] for name_param_pair in model.named_parameters()] | |
) | |
if type == "AdamW": | |
optim[key] = AdamW( | |
model_parameters, | |
lr=lr, | |
betas=(0.9, 0.98), | |
eps=1e-9, | |
weight_decay=0.1, | |
) | |
else: | |
raise ValueError("Unknown optimizer type: %s" % type) | |
schedulers = dict( | |
[ | |
(key, torch.optim.lr_scheduler.ExponentialLR(opt, gamma=0.999996)) | |
for key, opt in optim.items() | |
] | |
) | |
multi_optim = MultiOptimizer(optim, schedulers) | |
return multi_optim | |