Hecheng0625's picture
Upload 409 files
c968fc3 verified
raw
history blame
28 kB
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# This code is modified from https://github.com/lifeiteng/vall-e/blob/main/valle/models/valle.py
import random
from typing import Dict, Iterator, List, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchmetrics.classification import MulticlassAccuracy
from utils.util import make_pad_mask
from utils.topk_sampling import topk_sampling
from modules.general import Transpose
from modules.encoder import TokenEmbedding
from modules.general import PromptedFeatures
from modules.transformer import SinePositionalEmbedding
from modules.norms import AdaptiveLayerNorm, LayerNorm
from modules.transformer.transformer import TransformerEncoder, TransformerEncoderLayer
class VALLE(nn.Module):
def __init__(
self,
cfg,
decoder_cls=TransformerEncoder,
decoder_layer_cls=TransformerEncoderLayer,
):
super().__init__()
decoder_dim = cfg.decoder_dim
nhead = cfg.nhead
nar_scale_factor = cfg.nar_scale_factor
num_quantizers = cfg.num_quantizers
num_decoder_layers = cfg.num_decoder_layers
nar_decoder_dim = int(decoder_dim * nar_scale_factor)
self.ar_text_embedding = TokenEmbedding(decoder_dim, cfg.text_token_num)
self.nar_text_embedding = TokenEmbedding(nar_decoder_dim, cfg.text_token_num)
self.ar_audio_prepend_bos = cfg.prepend_bos
self.ar_audio_embedding = TokenEmbedding(
decoder_dim, cfg.audio_token_num + 1 + int(cfg.prepend_bos)
)
self.audio_token_num = cfg.audio_token_num
# PreNet of AR
if cfg.add_prenet:
self.ar_text_prenet = nn.Sequential(
Transpose(),
nn.Conv1d(decoder_dim, decoder_dim, kernel_size=5, padding="same"),
nn.BatchNorm1d(decoder_dim),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv1d(decoder_dim, decoder_dim, kernel_size=5, padding="same"),
nn.BatchNorm1d(decoder_dim),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv1d(decoder_dim, decoder_dim, kernel_size=5, padding="same"),
nn.BatchNorm1d(decoder_dim),
nn.ReLU(),
nn.Dropout(0.5),
Transpose(),
nn.Linear(decoder_dim, decoder_dim),
)
self.ar_audio_prenet = nn.Sequential(
nn.Linear(decoder_dim, 256),
nn.ReLU(),
nn.Dropout(0.25),
nn.Linear(256, 256),
nn.ReLU(),
nn.Dropout(0.25),
nn.Linear(256, decoder_dim),
)
else:
self.ar_text_prenet = nn.Identity()
self.ar_audio_prenet = nn.Identity()
self.ar_text_position = SinePositionalEmbedding(
decoder_dim,
dropout=0.1,
scale=False,
alpha=True,
)
self.ar_audio_position = SinePositionalEmbedding(
decoder_dim,
dropout=0.1,
scale=False,
alpha=True,
)
self.ar_decoder = decoder_cls(
decoder_layer_cls(
decoder_dim,
nhead,
dim_feedforward=decoder_dim * 4, # *4?
dropout=0.1,
batch_first=True,
norm_first=cfg.norm_first,
),
num_layers=num_decoder_layers,
norm=LayerNorm(decoder_dim) if cfg.norm_first else None,
)
self.ar_predict_layer = nn.Linear(
decoder_dim, cfg.audio_token_num + 1, bias=False
)
self.ar_accuracy_metric = MulticlassAccuracy(
cfg.audio_token_num + 1,
top_k=10,
average="micro",
multidim_average="global",
ignore_index=cfg.audio_token_num,
)
self.rng = random.Random(0)
self.num_heads = nhead
self.prefix_mode = cfg.prefix_mode
self.num_quantizers = num_quantizers
assert num_quantizers >= 1
if num_quantizers > 1:
self.nar_audio_embeddings = nn.ModuleList(
[
TokenEmbedding(nar_decoder_dim, cfg.audio_token_num + 1)
] # Why the first layer is audio_token_num + 1?
+ [
TokenEmbedding(nar_decoder_dim, cfg.audio_token_num)
for i in range(num_quantizers - 1)
]
)
if cfg.add_prenet:
self.nar_text_prenet = nn.Sequential(
Transpose(),
nn.Conv1d(
nar_decoder_dim, nar_decoder_dim, kernel_size=5, padding="same"
),
nn.BatchNorm1d(nar_decoder_dim),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv1d(
nar_decoder_dim, nar_decoder_dim, kernel_size=5, padding="same"
),
nn.BatchNorm1d(nar_decoder_dim),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv1d(
nar_decoder_dim, nar_decoder_dim, kernel_size=5, padding="same"
),
nn.BatchNorm1d(nar_decoder_dim),
nn.ReLU(),
nn.Dropout(0.5),
Transpose(),
nn.Linear(nar_decoder_dim, nar_decoder_dim),
)
self.nar_audio_prenet = nn.Sequential(
nn.Linear(nar_decoder_dim, 256),
nn.ReLU(),
nn.Dropout(0.25),
nn.Linear(256, 256),
nn.ReLU(),
nn.Dropout(0.25),
nn.Linear(256, nar_decoder_dim),
)
else:
self.nar_text_prenet = nn.Identity()
self.nar_audio_prenet = nn.Identity()
self.nar_text_position = SinePositionalEmbedding(
nar_decoder_dim,
dropout=0.0,
scale=False,
alpha=False,
)
self.nar_audio_position = SinePositionalEmbedding(
nar_decoder_dim,
dropout=0.1,
scale=False,
alpha=False,
)
self.nar_decoder = decoder_cls(
decoder_layer_cls(
nar_decoder_dim,
int(nhead * nar_scale_factor),
dim_feedforward=nar_decoder_dim * 4,
dropout=0.1,
batch_first=True,
norm_first=cfg.norm_first,
adaptive_layer_norm=True,
),
num_layers=int(num_decoder_layers * nar_scale_factor),
norm=(
AdaptiveLayerNorm(
nar_decoder_dim, norm=nn.LayerNorm(nar_decoder_dim)
)
if cfg.norm_first
else None
),
)
self.nar_predict_layers = nn.ModuleList(
[
nn.Linear(nar_decoder_dim, cfg.audio_token_num, bias=False)
for i in range(num_quantizers - 1)
]
)
self.nar_stage_embeddings = nn.ModuleList(
[TokenEmbedding(nar_decoder_dim, 1) for i in range(num_quantizers - 1)]
)
if cfg.share_embedding:
for j in range(0, num_quantizers - 2):
self.nar_predict_layers[j].weight = self.nar_audio_embeddings[
j + 2
].weight
self.nar_accuracy_metric = MulticlassAccuracy(
cfg.audio_token_num + 1,
top_k=10,
average="micro",
multidim_average="global",
ignore_index=cfg.audio_token_num,
)
def forward(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: Union[torch.Tensor, PromptedFeatures],
y_lens: Union[torch.Tensor, PromptedFeatures],
reduction: str = "sum",
train_stage: int = 0,
**kwargs,
) -> Tuple[torch.Tensor, Union[torch.Tensor, None]]:
"""
Args:
x:
A 2-D tensor of shape (N, S).
x_lens:
A 1-D tensor of shape (N,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (N, T, 8).
y_lens:
A 1-D tensor of shape (N,). It contains the number of tokens in `x`
before padding.
train_stage:
0: AR & NAR modules, 1: AR modules, 2: NAR modules
Returns:
Return the predicted audio code matrix, cross-entropy loss and Top-10 accuracy.
"""
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
y_prompts_codes = None
if isinstance(y, PromptedFeatures):
y_prompts_codes, y = y.data
prompts_len, y_lens = y_lens.data
assert prompts_len.min() == prompts_len.max()
assert self.prefix_mode == 4
y_prompts_codes = y_prompts_codes.type(torch.int64)
assert y.ndim == 3, y.shape
assert y_lens.ndim == 1, y_lens.shape
x_mask = make_pad_mask(x_lens).to(x.device)
y_mask = make_pad_mask(y_lens).to(y.device)
y_mask_int = y_mask.type(torch.int64)
text = x
codes = y.type(torch.int64) * (1 - y_mask_int.unsqueeze(dim=-1))
y, targets = self.pad_y_eos(
codes[..., 0], y_mask_int, eos_id=self.audio_token_num
)
self.y_mask_int = y_mask_int
metrics = {}
total_loss = 0.0
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
if self.ar_audio_prepend_bos:
ar_xy_padding_mask = torch.concat(
[x_mask, F.pad(y_mask, (1, 0), value=False)], dim=1
)
else:
ar_xy_padding_mask = xy_padding_mask
self.xy_padding_mask = xy_padding_mask
self.ar_xy_padding_mask = ar_xy_padding_mask
# AR Decoder
if train_stage in [0, 1]:
ar_loss, ar_metrics = self._forward_ar_decoder(
text, x_lens.max(), y, y_lens.max(), targets, x_mask, y_mask, reduction
)
total_loss += ar_loss
metrics["AR_Top100Acc"] = ar_metrics
# NAR Decoder
if self.ar_audio_prepend_bos:
y = y[:, 1:]
if self.num_quantizers > 1 and train_stage in [0, 2]:
nar_loss, nar_metrics = self._forward_nar_decoder(
text,
x_lens,
y,
y_lens,
codes,
y_prompts_codes,
x_mask,
y_mask,
reduction,
)
total_loss += nar_loss
metrics["NAR_Top100Acc"] = nar_metrics
if train_stage == 0:
total_loss = total_loss / 2.0
return total_loss, metrics
def _forward_ar_decoder(
self, x, x_len, y, y_lens, targets, x_mask, y_mask, reduction
):
x = self.ar_text_embedding(x)
x = self.ar_text_prenet(x)
x = self.ar_text_position(x)
y_len = y_lens.max() + int(self.ar_audio_prepend_bos)
x_attn_mask = F.pad(
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
(0, y_len),
value=True,
)
y_attn_mask = F.pad(
torch.triu(
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
diagonal=1,
),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
bsz, src_len = x.shape[0], x_len + y_len
_xy_padding_mask = (
self.ar_xy_padding_mask.view(bsz, 1, 1, src_len)
.expand(-1, self.num_heads, -1, -1)
.reshape(bsz * self.num_heads, 1, src_len)
)
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
xy_attn_mask = new_attn_mask
y_emb = self.ar_audio_embedding(y)
y_emb = self.ar_audio_prenet(y_emb)
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.ar_decoder(
(xy_pos, None),
mask=xy_attn_mask,
)
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
ar_loss = F.cross_entropy(logits, targets, reduction=reduction)
ar_metrics = self.ar_accuracy_metric(
logits.detach(), targets
).item() * y_lens.sum().type(torch.float32)
return ar_loss, ar_metrics
def _forward_nar_decoder(
self, x, x_lens, y, y_lens, codes, y_prompts_codes, x_mask, y_mask, reduction
):
num_nar_layers = self.num_quantizers - 1
nar_stage = self.rng.choices(
[_k for _k in range(1, self.num_quantizers)],
weights=[1.0 / num_nar_layers] * num_nar_layers,
k=1,
)[0]
x = self.nar_text_embedding(x)
x = self.nar_text_prenet(x)
x = self.nar_text_position(x)
y_emb, prefix_len = self._prepare_prompts(
y, y_lens, codes, nar_stage, y_prompts_codes
)
y_len = y_lens.max()
targets = codes[..., nar_stage] + self.audio_token_num * self.y_mask_int
if self.prefix_mode in [2, 4]:
xy_padding_mask = torch.concat(
[
x_mask,
F.pad(y_mask, (y_emb.shape[1] - y_len, 0), value=False),
],
dim=1,
)
elif self.prefix_mode == 1:
targets = targets[:, prefix_len:]
y_pos = self.nar_audio_prenet(y_emb)
y_pos = self.nar_audio_position(y_pos)
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.nar_decoder(
(xy_pos, self.nar_stage_embeddings[nar_stage - 1].weight),
src_key_padding_mask=self.xy_padding_mask,
)
xy_dec = xy_dec[:, x_lens.max() + prefix_len :]
if self.prefix_mode == 4:
prefix_len = 0
logits = self.nar_predict_layers[nar_stage - 1](xy_dec).permute(0, 2, 1)
total_length = (y_lens).sum().type(torch.float32)
nar_loss = F.cross_entropy(
logits,
targets,
ignore_index=self.audio_token_num,
reduction=reduction,
) * (total_length / (total_length - prefix_len * x.shape[0]))
nar_metrics = (
self.nar_accuracy_metric(
F.pad(
logits.detach(),
(0, 0, 0, 1, 0, 0),
value=logits.min().cpu().item(),
),
targets,
).item()
* total_length
)
return nar_loss, nar_metrics
def inference(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: torch.Tensor,
enroll_x_lens: torch.Tensor,
top_k: int = -100,
temperature: float = 1.0,
) -> torch.Tensor:
"""
Args:
x:
A 2-D tensor of shape (1, S).
x_lens:
A 1-D tensor of shape (1,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (1, T, 8).
top_k: (`optional`) int
The number of highest probability tokens to keep for top-k-filtering. Default to -100.
temperature: (`optional`) float
The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
Returns:
Return the predicted audio code matrix.
"""
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3, y.shape
assert y.shape[0] == 1, y.shape
assert torch.all(x_lens > 0)
text = x
x = self.ar_text_embedding(text)
x = self.ar_text_prenet(x)
x = self.ar_text_position(x)
text_len = x_lens.max()
prompts = y
prefix_len = y.shape[1]
# AR Decoder
y = prompts[..., 0]
if self.ar_audio_prepend_bos:
y = F.pad(y, (1, 0), value=self.audio_token_num + 1)
x_len = x_lens.max()
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
while True:
y_emb = self.ar_audio_embedding(y)
y_emb = self.ar_audio_prenet(y_emb)
y_pos = self.ar_audio_position(y_emb)
xy_pos = torch.concat([x, y_pos], dim=1)
y_len = y.shape[1]
x_attn_mask_pad = F.pad(
x_attn_mask,
(0, y_len),
value=True,
)
y_attn_mask = F.pad(
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
(x_len, 0),
value=False,
)
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(
y.device
)
xy_dec, _ = self.ar_decoder(
(xy_pos, None),
mask=xy_attn_mask,
)
logits = self.ar_predict_layer(xy_dec[:, -1])
samples = topk_sampling(
logits, top_k=top_k, top_p=1.0, temperature=temperature
)
if (
torch.argmax(logits, dim=-1)[0] == self.audio_token_num
or samples[0, 0] == self.audio_token_num
or (y.shape[1] - prompts.shape[1]) > x_lens.max() * 16
):
if prompts.shape[1] == y.shape[1]:
raise SyntaxError("well trained model shouldn't reach here.")
break
y = torch.concat([y, samples], dim=1)
codes = [y[:, prefix_len + int(self.ar_audio_prepend_bos) :]]
if self.num_quantizers == 1:
return torch.stack(codes, dim=-1)
# Non-AR Decoders
y_emb = self.nar_audio_embeddings[0](y[:, int(self.ar_audio_prepend_bos) :])
if self.prefix_mode in [2, 4]:
enrolled_len = enroll_x_lens.max().item()
# SOS + Synthesis Text + EOS
text = torch.concat(
[
text[:, :1],
text[:, enrolled_len - 1 :],
],
dim=1,
)
text_len = text_len - (enrolled_len - 2)
assert text.shape[0] == 1
x = self.nar_text_embedding(text)
x = self.nar_text_prenet(x)
x = self.nar_text_position(x)
if self.prefix_mode == 0:
for i, (predict_layer, embedding_layer) in enumerate(
zip(
self.nar_predict_layers,
self.nar_audio_embeddings[1:],
)
):
y_pos = self.nar_audio_prenet(y_emb)
y_pos = self.nar_audio_position(y_pos)
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.nar_decoder(
(xy_pos, self.nar_stage_embeddings[i].weight)
)
logits = predict_layer(xy_dec[:, text_len + prefix_len :])
samples = torch.argmax(logits, dim=-1)
codes.append(samples)
if i < self.num_quantizers - 2:
y_emb[:, :prefix_len] += embedding_layer(prompts[..., i + 1])
y_emb[:, prefix_len:] += embedding_layer(samples)
else:
for j in range(1, self.num_quantizers):
y_emb[:, :prefix_len] += self.nar_audio_embeddings[j](prompts[..., j])
for i, (predict_layer, embedding_layer) in enumerate(
zip(
self.nar_predict_layers,
self.nar_audio_embeddings[1:],
)
):
y_pos = self.nar_audio_prenet(y_emb)
y_pos = self.nar_audio_position(y_pos)
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.nar_decoder(
(xy_pos, self.nar_stage_embeddings[i].weight)
)
logits = predict_layer(xy_dec[:, text_len + prefix_len :])
samples = torch.argmax(logits, dim=-1)
codes.append(samples)
if i < self.num_quantizers - 2:
y_emb[:, prefix_len:] += embedding_layer(samples)
assert len(codes) == self.num_quantizers
return torch.stack(codes, dim=-1)
def continual(
self,
x: torch.Tensor,
x_lens: torch.Tensor,
y: torch.Tensor,
) -> torch.Tensor:
"""
Args:
x:
A 2-D tensor of shape (1, S).
x_lens:
A 1-D tensor of shape (1,). It contains the number of tokens in `x`
before padding.
y:
A 3-D tensor of shape (1, T, 8).
Returns:
Return the predicted audio code matrix.
"""
assert x.ndim == 2, x.shape
assert x_lens.ndim == 1, x_lens.shape
assert y.ndim == 3, y.shape
assert y.shape[0] == 1, y.shape
assert torch.all(x_lens > 0)
assert self.num_quantizers == 8
text = x
x = self.ar_text_embedding(text)
x = self.ar_text_prenet(x)
x = self.ar_text_position(x)
text_len = x_lens.max()
prefix_len = min(int(y.shape[1] * 0.5), 3 * 75)
# AR Decoder
prompts = y[:, :prefix_len]
codes = [y[:, prefix_len:, 0]]
# Non-AR Decoders
x = self.nar_text_embedding(text)
x = self.nar_text_prenet(x)
x = self.nar_text_position(x)
y_emb = self.nar_audio_embeddings[0](y[..., 0])
if self.prefix_mode == 0:
for i, (predict_layer, embedding_layer) in enumerate(
zip(
self.nar_predict_layers,
self.nar_audio_embeddings[1:],
)
):
y_pos = self.nar_audio_position(y_emb)
y_pos = self.nar_audio_prenet(y_pos)
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.nar_decoder(
(xy_pos, self.nar_stage_embeddings[i].weight)
)
logits = predict_layer(xy_dec[:, text_len + prefix_len :])
samples = torch.argmax(logits, dim=-1)
codes.append(samples)
if i < 6:
y_emb[:, :prefix_len] += embedding_layer(prompts[..., i + 1])
y_emb[:, prefix_len:] += embedding_layer(samples)
else:
for j in range(1, 8):
y_emb[:, :prefix_len] += self.nar_audio_embeddings[j](prompts[..., j])
for i, (predict_layer, embedding_layer) in enumerate(
zip(
self.nar_predict_layers,
self.nar_audio_embeddings[1:],
)
):
y_pos = self.nar_audio_prenet(y_emb)
y_pos = self.nar_audio_position(y_pos)
xy_pos = torch.concat([x, y_pos], dim=1)
xy_dec, _ = self.nar_decoder(
(xy_pos, self.nar_stage_embeddings[i].weight)
)
logits = predict_layer(xy_dec[:, text_len + prefix_len :])
samples = torch.argmax(logits, dim=-1)
codes.append(samples)
if i < 6:
y_emb[:, prefix_len:] += embedding_layer(samples)
assert len(codes) == 8
return torch.stack(codes, dim=-1)
def stage_parameters(self, stage: int = 1) -> Iterator[nn.Parameter]:
assert stage > 0
if stage == 1:
for name, param in self.named_parameters():
if name.startswith("ar_"):
yield param
if stage == 2:
for name, param in self.named_parameters():
if name.startswith("nar_"):
yield param
def stage_named_parameters(
self, stage: int = 1
) -> Iterator[Tuple[str, nn.Parameter]]:
assert stage > 0
if stage == 1:
for pair in self.named_parameters():
if pair[0].startswith("ar_"):
yield pair
if stage == 2:
for pair in self.named_parameters():
if pair[0].startswith("nar_"):
yield pair
def pad_y_eos(self, y, y_mask_int, eos_id):
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(
y_mask_int, (0, 1), value=1
)
if self.ar_audio_prepend_bos:
return (
F.pad(targets[:, :-1], (1, 0), value=self.audio_token_num + 1),
targets,
)
return targets[:, :-1], targets[:, 1:]
def _prepare_prompts(self, y, y_lens, codes, nar_stage, y_prompts_codes):
# 5.1 For the NAR acoustic prompt tokens, we select a random segment waveform of 3 seconds
# from the same utterance.
# We implement this differently.
if self.prefix_mode == 0:
# no prefix
prefix_len = 0
y_emb = self.nar_audio_embeddings[0](y)
for j in range(1, nar_stage):
# Formula (4) (5)
y_emb = y_emb + self.nar_audio_embeddings[j](codes[..., j])
elif self.prefix_mode == 1:
# prefix at begining
int_low = (0.25 * y_lens.min()).type(torch.int64).item()
prefix_len = torch.randint(int_low, int_low * 2, size=()).item()
prefix_len = min(prefix_len, 225) # 24000/320 * 3s = 225 frames
y_prompts = self.nar_audio_embeddings[0](y[:, :prefix_len])
y_emb = self.nar_audio_embeddings[0](y[:, prefix_len:])
for j in range(1, self.num_quantizers):
y_prompts += self.nar_audio_embeddings[j](codes[:, :prefix_len, j])
if j < nar_stage:
y_emb += self.nar_audio_embeddings[j](codes[:, prefix_len:, j])
y_emb = torch.concat([y_prompts, y_emb], axis=1)
elif self.prefix_mode in [2, 4]:
if self.prefix_mode == 2:
# random prefix
prefix_len = min(225, int(0.25 * y_lens.min().item()))
y_prompts_codes = []
for b in range(codes.shape[0]):
start = self.rng.randint(0, y_lens[b].item() - prefix_len)
y_prompts_codes.append(
torch.clone(codes[b, start : start + prefix_len])
)
codes[b, start : start + prefix_len, nar_stage] = NUM_AUDIO_TOKENS
y_prompts_codes = torch.stack(y_prompts_codes, dim=0)
else:
prefix_len = y_prompts_codes.shape[1]
y_prompts = self.nar_audio_embeddings[0](y_prompts_codes[..., 0])
y_emb = self.nar_audio_embeddings[0](y)
for j in range(1, self.num_quantizers):
y_prompts += self.nar_audio_embeddings[j](y_prompts_codes[..., j])
if j < nar_stage:
y_emb += self.nar_audio_embeddings[j](codes[..., j])
y_emb = torch.concat([y_prompts, y_emb], axis=1)
else:
raise ValueError
return y_emb, prefix_len