Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import json | |
import numpy as np | |
from text import text_to_sequence | |
from text.text_token_collation import phoneIDCollation | |
from models.tts.base.tts_dataset import ( | |
TTSDataset, | |
TTSCollator, | |
TTSTestDataset, | |
TTSTestCollator, | |
) | |
class VITSDataset(TTSDataset): | |
def __init__(self, cfg, dataset, is_valid): | |
super().__init__(cfg, dataset, is_valid=is_valid) | |
def __getitem__(self, index): | |
single_feature = super().__getitem__(index) | |
return single_feature | |
def __len__(self): | |
return super().__len__() | |
def get_metadata(self): | |
metadata_filter = [] | |
with open(self.metafile_path, "r", encoding="utf-8") as f: | |
metadata = json.load(f) | |
for utt_info in metadata: | |
duration = utt_info["Duration"] | |
frame_len = ( | |
duration | |
* self.cfg.preprocess.sample_rate | |
// self.cfg.preprocess.hop_size | |
) | |
if ( | |
frame_len | |
< self.cfg.preprocess.segment_size // self.cfg.preprocess.hop_size | |
): | |
continue | |
metadata_filter.append(utt_info) | |
return metadata_filter | |
class VITSCollator(TTSCollator): | |
"""Zero-pads model inputs and targets based on number of frames per step""" | |
def __init__(self, cfg): | |
super().__init__(cfg) | |
def __call__(self, batch): | |
parsed_batch_features = super().__call__(batch) | |
return parsed_batch_features | |
class VITSTestDataset(TTSTestDataset): | |
def __init__(self, args, cfg): | |
super().__init__(args, cfg) | |
processed_data_dir = os.path.join(cfg.preprocess.processed_dir, args.dataset) | |
if cfg.preprocess.use_spkid: | |
spk2id_path = os.path.join(processed_data_dir, cfg.preprocess.spk2id) | |
with open(spk2id_path, "r") as f: | |
self.spk2id = json.load(f) | |
utt2spk_path = os.path.join(processed_data_dir, cfg.preprocess.utt2spk) | |
self.utt2spk = dict() | |
with open(utt2spk_path, "r") as f: | |
for line in f.readlines(): | |
utt, spk = line.strip().split("\t") | |
self.utt2spk[utt] = spk | |
if cfg.preprocess.use_text or cfg.preprocess.use_phone: | |
self.utt2seq = {} | |
for utt_info in self.metadata: | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
if cfg.preprocess.use_text: | |
text = utt_info["Text"] | |
sequence = text_to_sequence(text, cfg.preprocess.text_cleaners) | |
elif cfg.preprocess.use_phone: | |
# load phoneme squence from phone file | |
phone_path = os.path.join( | |
processed_data_dir, cfg.preprocess.phone_dir, uid + ".phone" | |
) | |
with open(phone_path, "r") as fin: | |
phones = fin.readlines() | |
assert len(phones) == 1 | |
phones = phones[0].strip() | |
phones_seq = phones.split(" ") | |
phon_id_collator = phoneIDCollation(cfg, dataset=dataset) | |
sequence = phon_id_collator.get_phone_id_sequence(cfg, phones_seq) | |
self.utt2seq[utt] = sequence | |
def __getitem__(self, index): | |
utt_info = self.metadata[index] | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
single_feature = dict() | |
if self.cfg.preprocess.use_spkid: | |
single_feature["spk_id"] = np.array( | |
[self.spk2id[self.utt2spk[utt]]], dtype=np.int32 | |
) | |
if self.cfg.preprocess.use_phone or self.cfg.preprocess.use_text: | |
single_feature["phone_seq"] = np.array(self.utt2seq[utt]) | |
single_feature["phone_len"] = len(self.utt2seq[utt]) | |
return single_feature | |
def get_metadata(self): | |
with open(self.metafile_path, "r", encoding="utf-8") as f: | |
metadata = json.load(f) | |
return metadata | |
def __len__(self): | |
return len(self.metadata) | |
class VITSTestCollator(TTSTestCollator): | |
"""Zero-pads model inputs and targets based on number of frames per step""" | |
def __init__(self, cfg): | |
self.cfg = cfg | |
def __call__(self, batch): | |
return super().__call__(batch) | |