Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 seanghay | |
# | |
# This code is from an unliscensed repository. | |
# | |
# Note: This code has been modified to fit the context of this repository. | |
# This code is included in an MIT-licensed repository. | |
# The repository's MIT license does not apply to this code. | |
# This code is modified from https://github.com/seanghay/uvr-mdx-infer/blob/main/separate.py | |
import torch | |
import numpy as np | |
import onnxruntime as ort | |
from tqdm import tqdm | |
class ConvTDFNet: | |
""" | |
ConvTDFNet - Convolutional Temporal Frequency Domain Network. | |
""" | |
def __init__(self, target_name, L, dim_f, dim_t, n_fft, hop=1024): | |
""" | |
Initialize ConvTDFNet. | |
Args: | |
target_name (str): The target name for separation. | |
L (int): Number of layers. | |
dim_f (int): Dimension in the frequency domain. | |
dim_t (int): Dimension in the time domain (log2). | |
n_fft (int): FFT size. | |
hop (int, optional): Hop size. Defaults to 1024. | |
Returns: | |
None | |
""" | |
super(ConvTDFNet, self).__init__() | |
self.dim_c = 4 | |
self.dim_f = dim_f | |
self.dim_t = 2**dim_t | |
self.n_fft = n_fft | |
self.hop = hop | |
self.n_bins = self.n_fft // 2 + 1 | |
self.chunk_size = hop * (self.dim_t - 1) | |
self.window = torch.hann_window(window_length=self.n_fft, periodic=True) | |
self.target_name = target_name | |
out_c = self.dim_c * 4 if target_name == "*" else self.dim_c | |
self.freq_pad = torch.zeros([1, out_c, self.n_bins - self.dim_f, self.dim_t]) | |
self.n = L // 2 | |
def stft(self, x): | |
""" | |
Perform Short-Time Fourier Transform (STFT). | |
Args: | |
x (torch.Tensor): Input waveform. | |
Returns: | |
torch.Tensor: STFT of the input waveform. | |
""" | |
x = x.reshape([-1, self.chunk_size]) | |
x = torch.stft( | |
x, | |
n_fft=self.n_fft, | |
hop_length=self.hop, | |
window=self.window, | |
center=True, | |
return_complex=True, | |
) | |
x = torch.view_as_real(x) | |
x = x.permute([0, 3, 1, 2]) | |
x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape( | |
[-1, self.dim_c, self.n_bins, self.dim_t] | |
) | |
return x[:, :, : self.dim_f] | |
def istft(self, x, freq_pad=None): | |
""" | |
Perform Inverse Short-Time Fourier Transform (ISTFT). | |
Args: | |
x (torch.Tensor): Input STFT. | |
freq_pad (torch.Tensor, optional): Frequency padding. Defaults to None. | |
Returns: | |
torch.Tensor: Inverse STFT of the input. | |
""" | |
freq_pad = ( | |
self.freq_pad.repeat([x.shape[0], 1, 1, 1]) | |
if freq_pad is None | |
else freq_pad | |
) | |
x = torch.cat([x, freq_pad], -2) | |
c = 4 * 2 if self.target_name == "*" else 2 | |
x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape( | |
[-1, 2, self.n_bins, self.dim_t] | |
) | |
x = x.permute([0, 2, 3, 1]) | |
x = x.contiguous() | |
x = torch.view_as_complex(x) | |
x = torch.istft( | |
x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True | |
) | |
return x.reshape([-1, c, self.chunk_size]) | |
class Predictor: | |
""" | |
Predictor class for source separation using ConvTDFNet and ONNX Runtime. | |
""" | |
def __init__(self, args, device): | |
""" | |
Initialize the Predictor. | |
Args: | |
args (dict): Configuration arguments. | |
device (str): Device to run the model ('cuda' or 'cpu'). | |
Returns: | |
None | |
Raises: | |
ValueError: If the provided device is not 'cuda' or 'cpu'. | |
""" | |
self.args = args | |
self.model_ = ConvTDFNet( | |
target_name="vocals", | |
L=11, | |
dim_f=args["dim_f"], | |
dim_t=args["dim_t"], | |
n_fft=args["n_fft"], | |
) | |
if device == "cuda": | |
self.model = ort.InferenceSession( | |
args["model_path"], providers=["CUDAExecutionProvider"] | |
) | |
elif device == "cpu": | |
self.model = ort.InferenceSession( | |
args["model_path"], providers=["CPUExecutionProvider"] | |
) | |
else: | |
raise ValueError("Device must be either 'cuda' or 'cpu'") | |
def demix(self, mix): | |
""" | |
Separate the sources from the input mix. | |
Args: | |
mix (np.ndarray): Input mixture signal. | |
Returns: | |
np.ndarray: Separated sources. | |
Raises: | |
AssertionError: If margin is zero. | |
""" | |
samples = mix.shape[-1] | |
margin = self.args["margin"] | |
chunk_size = self.args["chunks"] * 44100 | |
assert margin != 0, "Margin cannot be zero!" | |
if margin > chunk_size: | |
margin = chunk_size | |
segmented_mix = {} | |
if self.args["chunks"] == 0 or samples < chunk_size: | |
chunk_size = samples | |
counter = -1 | |
for skip in range(0, samples, chunk_size): | |
counter += 1 | |
s_margin = 0 if counter == 0 else margin | |
end = min(skip + chunk_size + margin, samples) | |
start = skip - s_margin | |
segmented_mix[skip] = mix[:, start:end].copy() | |
if end == samples: | |
break | |
sources = self.demix_base(segmented_mix, margin_size=margin) | |
return sources | |
def demix_base(self, mixes, margin_size): | |
""" | |
Base function for source separation. | |
Args: | |
mixes (dict): Dictionary of segmented mixtures. | |
margin_size (int): Size of the margin. | |
Returns: | |
np.ndarray: Separated sources. | |
""" | |
chunked_sources = [] | |
progress_bar = tqdm(total=len(mixes)) | |
progress_bar.set_description("Source separation") | |
for mix in mixes: | |
cmix = mixes[mix] | |
sources = [] | |
n_sample = cmix.shape[1] | |
model = self.model_ | |
trim = model.n_fft // 2 | |
gen_size = model.chunk_size - 2 * trim | |
pad = gen_size - n_sample % gen_size | |
mix_p = np.concatenate( | |
(np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1 | |
) | |
mix_waves = [] | |
i = 0 | |
while i < n_sample + pad: | |
waves = np.array(mix_p[:, i : i + model.chunk_size]) | |
mix_waves.append(waves) | |
i += gen_size | |
mix_waves = torch.tensor(np.array(mix_waves), dtype=torch.float32) | |
with torch.no_grad(): | |
_ort = self.model | |
spek = model.stft(mix_waves) | |
if self.args["denoise"]: | |
spec_pred = ( | |
-_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5 | |
+ _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5 | |
) | |
tar_waves = model.istft(torch.tensor(spec_pred)) | |
else: | |
tar_waves = model.istft( | |
torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0]) | |
) | |
tar_signal = ( | |
tar_waves[:, :, trim:-trim] | |
.transpose(0, 1) | |
.reshape(2, -1) | |
.numpy()[:, :-pad] | |
) | |
start = 0 if mix == 0 else margin_size | |
end = None if mix == list(mixes.keys())[::-1][0] else -margin_size | |
if margin_size == 0: | |
end = None | |
sources.append(tar_signal[:, start:end]) | |
progress_bar.update(1) | |
chunked_sources.append(sources) | |
_sources = np.concatenate(chunked_sources, axis=-1) | |
progress_bar.close() | |
return _sources | |
def predict(self, mix): | |
""" | |
Predict the separated sources from the input mix. | |
Args: | |
mix (np.ndarray): Input mixture signal. | |
Returns: | |
tuple: Tuple containing the mixture minus the separated sources and the separated sources. | |
""" | |
if mix.ndim == 1: | |
mix = np.asfortranarray([mix, mix]) | |
tail = mix.shape[1] % (self.args["chunks"] * 44100) | |
if mix.shape[1] % (self.args["chunks"] * 44100) != 0: | |
mix = np.pad( | |
mix, | |
( | |
(0, 0), | |
( | |
0, | |
self.args["chunks"] * 44100 | |
- mix.shape[1] % (self.args["chunks"] * 44100), | |
), | |
), | |
) | |
mix = mix.T | |
sources = self.demix(mix.T) | |
opt = sources[0].T | |
if tail != 0: | |
return ((mix - opt)[: -(self.args["chunks"] * 44100 - tail), :], opt) | |
else: | |
return ((mix - opt), opt) | |