Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import os | |
import json | |
import torchaudio | |
from glob import glob | |
from collections import defaultdict | |
from utils.util import has_existed | |
from preprocessors import GOLDEN_TEST_SAMPLES | |
def get_test_songs(): | |
golden_samples = GOLDEN_TEST_SAMPLES["popcs"] | |
# every item is a string | |
golden_songs = [s.split("_")[:1] for s in golden_samples] | |
# song, eg: 万有引力 | |
return golden_songs | |
def popcs_statistics(data_dir): | |
songs = [] | |
songs2utts = defaultdict(list) | |
song_infos = glob(data_dir + "/*") | |
for song_info in song_infos: | |
song_info_split = song_info.split("/")[-1].split("-")[-1] | |
songs.append(song_info_split) | |
utts = glob(song_info + "/*.wav") | |
for utt in utts: | |
uid = utt.split("/")[-1].split("_")[0] | |
songs2utts[song_info_split].append(uid) | |
unique_songs = list(set(songs)) | |
unique_songs.sort() | |
print( | |
"popcs: {} utterances ({} unique songs)".format(len(songs), len(unique_songs)) | |
) | |
print("Songs: \n{}".format("\t".join(unique_songs))) | |
return songs2utts | |
def main(output_path, dataset_path): | |
print("-" * 10) | |
print("Preparing test samples for popcs...\n") | |
save_dir = os.path.join(output_path, "popcs") | |
train_output_file = os.path.join(save_dir, "train.json") | |
test_output_file = os.path.join(save_dir, "test.json") | |
if has_existed(test_output_file): | |
return | |
# Load | |
popcs_dir = dataset_path | |
songs2utts = popcs_statistics(popcs_dir) | |
test_songs = get_test_songs() | |
# We select songs of standard samples as test songs | |
train = [] | |
test = [] | |
train_index_count = 0 | |
test_index_count = 0 | |
train_total_duration = 0 | |
test_total_duration = 0 | |
song_names = list(songs2utts.keys()) | |
for chosen_song in song_names: | |
for chosen_uid in songs2utts[chosen_song]: | |
res = { | |
"Dataset": "popcs", | |
"Singer": "female1", | |
"Song": chosen_song, | |
"Uid": "{}_{}".format(chosen_song, chosen_uid), | |
} | |
res["Path"] = "popcs-{}/{}_wf0.wav".format(chosen_song, chosen_uid) | |
res["Path"] = os.path.join(popcs_dir, res["Path"]) | |
assert os.path.exists(res["Path"]) | |
waveform, sample_rate = torchaudio.load(res["Path"]) | |
duration = waveform.size(-1) / sample_rate | |
res["Duration"] = duration | |
if ([chosen_song]) in test_songs: | |
res["index"] = test_index_count | |
test_total_duration += duration | |
test.append(res) | |
test_index_count += 1 | |
else: | |
res["index"] = train_index_count | |
train_total_duration += duration | |
train.append(res) | |
train_index_count += 1 | |
print("#Train = {}, #Test = {}".format(len(train), len(test))) | |
print( | |
"#Train hours= {}, #Test hours= {}".format( | |
train_total_duration / 3600, test_total_duration / 3600 | |
) | |
) | |
# Save | |
os.makedirs(save_dir, exist_ok=True) | |
with open(train_output_file, "w") as f: | |
json.dump(train, f, indent=4, ensure_ascii=False) | |
with open(test_output_file, "w") as f: | |
json.dump(test, f, indent=4, ensure_ascii=False) | |